Transcript Slide 1

Connee Sloman CRNA, MSN

Assessing and Managing Sedation

Connee L. Sloman, CRNA

Certified Registered Nurse Anesthetist Associated Anesthesiologist Springfield, Illinois

Faculty Disclosure

It is the policy of The France Foundation to ensure balance, independence, objectivity, and scientific rigor in all its sponsored educational activities. All faculty, activity planners, content reviewers, and staff participating in this activity will disclose to the participants any significant financial interest or other relationship with manufacturer(s) of any commercial product(s)/device(s) and/or provider(s) of commercial services included in this educational activity. The intent of this disclosure is not to prevent a person with a relevant financial or other relationship from participating in the activity, but rather to provide participants with information on which they can base their own judgments. The France Foundation has identified and resolved any and all conflicts of interest prior to the release of this activity. Connee Sloman, CRNA, has received grant/research support from the AANA.

Learning Objectives

• Manage adult patients who need sedation and analgesia while receiving ventilator support according to current standards and guidelines • Use validated scales for sedation, pain, agitation and delirium in the management of these critically ill patients • Assess recent clinical findings in pain, agitation, and delirium management and incorporate them into the management of ICU patients

Need for Sedation and Analgesia

• Prevent pain and anxiety • Decrease oxygen consumption • Decrease the stress response • Patient-ventilator synchrony • Avoid adverse neurocognitive sequelae – Depression – PTSD – Delirium – Anxiety • Avoid post-intensive care syndrome Rotondi AJ, et al.

Crit Care Med

. 2002;30:746-752

.

Weinert C.

Curr Opin in Crit Care

. 2005;11:376-380.

Kress JP, et al.

Am J Respir Crit Care Med

. 1996;153:1012-1018.

Characteristics of an Ideal Sedative

• Rapid onset of action allows rapid recovery after discontinuation • Effective at providing adequate sedation with predictable dose response • Easy to administer • Lack of drug accumulation • Few adverse effects • Minimal adverse interactions with other drugs • Cost-effective • Promotes natural sleep 1. Ostermann ME, et al.

JAMA.

2000;283:1451-1459.

2. Jacobi J, et al.

Crit Care Med

. 2002;30:119-141.

3. Dasta JF, et al.

Pharmacother.

2006;26:798-805.

4. Nelson LE, et al.

Anesthesiol

. 2003;98:428-436.

Consider Patient Comorbidities When Choosing a Sedation Regimen

• Chronic pain • Organ dysfunction • CV instability • Substance abuse/withdrawal • Respiratory insufficiency • Obesity • Obstructive sleep apnea

Potential Drawbacks of Sedative and Analgesic Therapy

• Impede assessment of neurologic function • Increase risk for delirium • Numerous agent-specific adverse events • Vital signs alone do not tell the amount of pain • Need for objective measures of brain function to adjunctively monitor level of consciousness especially with NDNMB (BIS) Kollef MH, et al.

Chest

. 1998;114:541-548.

Pandharipande PP, et al.

Anesthesiology

. 2006;104:21-26.

A Word About the 2013 PAD Guidelines (Evidence-based)

• Supporting organizations – American College of Critical Care Medicine (ACCM) – Society of Critical Care Medicine (SCCM) – American Society of Health-System Pharmacists (ASHP) • Suggest preemptively treating pain with analgesics and/or non-pharmacologic treatment • Use opioids as first-line therapy for treatment of non neuropathic pain • Use non-opioid analgesics in conjunction with opioids to decrease opioid requirements and side effects

Improper Sedation

30.6% 15.4% 54.0%

• • • Continuous sedation carries the risks associated with oversedation and may increase the duration of mechanical ventilation (MV) 1 MV patients accrue significantly more cost during their ICU stay than non-MV patients 2 – $31,574 versus $12,931,

P

< 0.001

Sedation should be titrated to achieve a cooperative patient and daily wake-up, a JC requirement 1,2 Undersedated 3 Oversedated On Target 1. Kress JP, et al.

N Engl J Med.

2000;342:1471-1477.

2. Dasta JF, et al.

Crit Care Med.

2005;33:1266-1271.

3. Kaplan LJ, Bailey H.

Crit Care

. 2000;4(suppl 1):P190.

Pain, Agitation, and Delirium Are Interrelated

Delirium

Barr J, et al.

Crit Care Med.

2013;41:263-306.

ICU Delirium

• Develops in ~2/3 of critically ill patients • Hypoactive or mixed forms most common • Increased risk – Benzodiazepines – Extended ventilation – Immobility • Associated with weakness • Undiagnosed in up to 72% of cases Vasilevskis EE, et al.

Chest

. 2010;138(5):1224-1233.

Sequelae of Delirium

During the ICU/Hospital Stay

• Increased mortality • Longer intubation time • Average 10 additional days in hospital • Higher costs of care

After Hospital Discharge

• Increased mortality • Development of dementia • Long-term cognitive impairment • Requirement for care in chronic care facility • Decreased functional status at 6 months Bruno JJ, Warren ML.

Crit Care Nurs Clin North Am

. 2010;22(2):161-178.

Shehabi Y, et al.

Crit Care Med

. 2010;38(12):2311-2318.

Rockwood K, et al.

Age Ageing

. 1999;28(6):551-556.

Jackson JC, et al.

Neuropsychol Rev.

2004;14:87-98.

Nelson JE, et al.

Arch Intern Med.

2006;166:1993-1999.

Worse Long-term Cognitive Performance

• Duration of delirium was an independent predictor of cognitive impairment – An increase from 1 day of delirium to 5 days was associated with nearly a 5-point decline in cognitive battery scores • Patient testimony

“One quite literally loses one’s grip on what is true and what is false because the true and the false are mixed together in a mess of experience.

Girard TD, et al.

Crit Care Med.

2010;38:1513-1520.

Misak CJ

. Am J Respir Crit Care Med

. 2004;170(4):357-359.

Consequences of Delirium After Cardiac Operations

• Delirium after cardiac procedures is associated with – Increased mortality (13.5% vs 2.0% in patients without) – More hospital readmissions (45.7% vs 26.5%) – Reduced quality of life – Reduced cognitive functioning, including failures in attention, memory, perception, and motor function, and with functional dysfunction such as independency in activities of daily living and mobility • Suggests we need new treatment strategies Koster S, et al.

Ann Thorac Sur.

2012;93:705-711.

ABC Trial: Objectives

• To determine the efficacy and safety of a protocol linking:

spontaneous awakening trials (SATs) & spontaneous breathing trials (SBTs)

– Ventilator-free days – Duration of mechanical ventilation – ICU and hospital length of stay – Duration of coma and delirium – Long-term neuropsychological outcomes Girard TD, et al.

Lancet.

2008;371:126-134.

A Clinical Approach to Improve Outcomes in Critically Ill Patients

• More than half of patients on MV in the United States receive continuous sedation – Risks (delirium, prolonged MV, ↑ stay ICU/hospital) – Benzodiazepines and propofol • DIS (daily interruption of sedation) • Evidence suggests DIS used with assessment tools can lead to improved outcomes • Despite recommendations less than 33% of Medical ICUs in the US use a sedation protocol Berry E, Zecca H.

Crit Care Nurse

. 2012;32(1):43-51.

Despite Proven Benefits, Spontaneous Awakening/Daily Interruption Trials Are Not Standard of Practice at Most Institutions

• • • •

Canada

– 40% get SATs (273 physicians in 2005) 1

US

– 40% get SATs (2004-05) 2

Germany France

– 34% get SATs (214 ICUs in 2006) 3 – 40–50% deeply sedated with 90% on continuous infusion of sedative/opiate 4 1. Mehta S, et al.

Crit Care Med.

2006;34:374-380.

2. Devlin J.

Crit Care Med.

2006;34:556-557.

3. Martin J, et al.

Crit Care

. 2007;11:R124.

4. Payen JF, et al.

Anesthesiology.

2007;106:687-695.

Correlating Pain Assessment With Analgesic Administration in the ICU

• Fewer patients assessed for pain, more treated with analgesics in ICUs without analgesia protocols compared with ICUs with protocols 1 • Pain scoring used in 21% of surveyed ICUs in 2006 2 100 80 60 40 20 0

Assessed

60 87

Treated

25 * 92 *

Protocol No Protocol

* P

< 0.01 vs ICUs using a protocol 1. Payen JF, et al.

Anesthesiol.

2007;106:687-695.

2. Martin J, et al.

Crit Care.

2007;11:R124.

Agent

Midazolam Ketamine Fentanyl

Common Agents for Conscious Sedation

Classification

BZD Dissociative Anesthetic

Dose Guidelines Side Effects

0.5-1 mg every 5-10 min Respiratory depression, somnolence 200-750 mcg/kg bolus, 5-20 mcg/kg/min Hallucinations, delirium, intracranial HTN, ↑ secretions Opioid agonist 25-50 mcg Respiratory depression, Nausea/vomiting Mustoe TA, et al.

Plast Reconstr Surg.

2010;126(4):165e-176e.

Sedation-Agitation Scale (SAS)

4 3 2 1 Score 7 6 5 State Dangerous Agitation Very Agitated Agitated Calm and Cooperative Sedated Very Sedated Unarousable Behaviors Pulling at ET tube, climbing over bedrail, striking at staff, thrashing side-to-side Does not calm despite frequent verbal reminding, requires physical restraints Anxious or mildly agitated, attempting to sit up, calms down to verbal instructions Calm, awakens easily, follows commands Difficult to arouse, awakens to verbal stimuli or gentle shaking but drifts off Arouses to physical stimuli but does not communicate or follow commands Minimal or no response to noxious stimuli, does not communicate or follow commands

Riker RR, et al.

Crit Care Med

. 1999;27:1325-1329.

Brandl K, et al.

Pharmacotherapy.

2001;21:431-436.

PAD Choice of Sedative Recommendations

• We suggest that analgesia-first sedation be used in mechanically ventilated adult ICU patients (+2B) • We suggest that sedation strategies using nonbenzodiazepine sedatives (either propofol or dexmedetomidine) may be preferred over sedation with benzodiazepines (either midazolam or lorazepam) to improve clinical outcomes in mechanically ventilated adult ICU patients (+2B) • We suggest that in adult ICU patients with delirium unrelated to alcohol or benzodiazepine withdrawal, continuous IV infusions of dexmedetomidine rather than benzodiazepine infusions be administered for sedation to reduce the duration of delirium in these patients (+2B) Barr J, et al.

Crit Care Med.

2013;41:263-306.

Ramsay Sedation Scale

1 - Awake and anxious, agitated, or restless 2 - Awake, cooperative, accepting ventilation, oriented, tranquil 3 - Awake; responds only to commands 4 - Asleep; brisk response to light glabellar tap or loud noise 5 - Asleep; sluggish response to light glabellar tap or loud noise stimulus but does not respond to painful stimulus 6 - Asleep; no response to light glabellar tap or loud noise Ramsay MA, et al.

Br Med J.

1974;2(5920):656-659.

GABA Agonist Benzodiazepine (Midazolam)

Clinical Effects Adverse Effects

• Sedation, anxiolysis, and amnesia • Rapid onset of action (IV) • May accumulate with hepatic and/or renal failure • Anterograde amnesia • Long recovery time • Synergy with opioids • Respiratory depression • Delirium Olkkola KT, Ahonen J.

Handb Exp Pharmacol.

2008;(182):335-360.

Riker RR, et al; SEDCOM Study Group.

JAMA

. 2009;301(5):489-499.

Propofol

Clinical Effects Adverse Effects

• Sedation • Hypnosis • Anxiolysis • Muscle relaxation • Mild bronchodilation • Decreased ICP • Decreased cerebral metabolic rate • Antiemetic • Pain on injection • Respiratory depression • Hypotension • Decreased myocardial contractility • Increased serum triglycerides • Tolerance • Propofol infusion syndrome • Prolonged effect with high adiposity • Seizures (rare) Ellett ML.

Gastroenterol Nurs

. 2010;33(4):284-925.

Lundström S, et al.

J Pain Symptom Manage.

2010;40(3):466-470.

a 2

Agonist Dexmedetomidine

Clinical Effects Adverse Effects

• Antihypertensive • Sedation • Analgesia • Decreased shivering • Anxiolysis • Patient arousability • Potentiate effects of opioids, sedatives, and anesthetics • Decrease sympathetic activity • Hypotension • Hypertension • Nausea • Bradycardia • Dry mouth • Peripheral vasoconstriction at high doses Kamibayashi T, et al.

Anesthesiol.

2000;93:1345-1349.

Bhana N, et al.

Drugs

. 2000;59(2):263-268.

Study/Year

Grounds et al 1987

Benzodiazepines vs Propofol Better Outcomes With Propofol

Population

Cardiac surgery

Outcome Improved

Faster awakening Aitkenhead et al 1989 General ICU More consistent awakening, faster weaning McMurray et al 1990 Carrasco et al 1993 Roekaerts et al 1993 Ronan et al 1995 Sherry et al 1996 Chamorro et al 1996 Barrientos-Vega et al 1997 Weinbroum et al 1997 Sanchez-Izquierdo-Riera et al 1998 McCollam et al 1999 Hall et al 2001 Carson et al 2006 Ely EW, et al.

Chest.

2012;142(2);287-289.

Cardiac surgery General ICU Cardiac surgery Surgical ICU Cardiac surgery General ICU General ICU General ICU Trauma ICU Trauma ICU Mixed ICU Medical ICU Faster awakening More accurate sedation, faster awakening, lower costs Faster awakening, earlier extubation Faster awakening Lower costs Better ventilator synchrony, faster awakening Earlier extubation Faster awakening Faster awakening Less oversedation More accurate sedation, earlier extubation Fewer ventilator days

Benzodiazepines vs Propofol

Study/Year

Trials finding no differences in outcomes Searle et al, 1997

Population

Cardiac surgery Kress et al, 2000 Huey-Ling et al, 2008 Medical ICU Cardiac surgery Trials finding better outcomes with benzodiazepine: None

Outcome Improved

None None None Ely EW, et al.

Chest.

2012;142(2);287-289.

Benzodiazepines vs Dexmedetomidine

Study/Year

Trials finding better outcomes with dex Pandharipande et al, 2007 Riker et al, 2009 Ruokonen et al, 2009 Maldonado et al, 2009 Esmaoglu et al, 2009 Dasta et al, 2010 Jakob et al, 2012 Trials finding no differences in outcomes: None Trials finding better outcomes with the BZD: None

Population

Mixed ICU Mixed ICU Mixed ICU Cardiac surgery Eclampsia Mixed ICU General ICU

Outcome Improved

More accurate sedation, more delirium/coma-free days Lower prevalence of delirium, earlier extubation Shorter duration of mechanical ventilation Lower incidence and duration of delirium Shorter ICU length of stay Lower ICU costs Lighter sedation, fewer ventilation days Ely EW, et al.

Chest.

2012;142(2);287-289.

MENDS: Dexmedetomidine vs Lorazepam

• Double-blind RCT of dex (0.15–1.5 mcg/kg/hr) vs lorazepam (1–10 mg/hr) • Titrated to sedation goal (using RASS) established by ICU team • Dexmedetomidine resulted in more time spent within sedation goals than lorazepam (

P

= 0.04). Differences in 28-day mortality and delirium-free days were not significant • While incidence of HR ≤ 60 was greater with Dex (17 vs 4%,

P

incidence of HR ≤ 40 was not different (2 vs 2%) = 0.03, the Pandharipande PP, et al.

JAMA

. 2007;298(22):2644-2653.

SEDCOM: Dexmedetomidine vs Midazolam

• Double-blind, randomized, multicenter trial comparing long-term (> 24 hr) dexmedetomidine (n = 244) with midazolam (n = 122) • Sedatives (DEX 0.2-1.4 μg/kg/hr or MDZ 0.02-0.1 mg/kg/hr) titrated for light sedation (RASS -2 to +1), administered up to 30 days • All patients underwent daily arousal assessments and drug titration Q 4 hours

Outcome

Time in target sedation range, % Duration of sedation, days Time to extubation, days Patients receiving open-label, % midazolam Bradycardia, % Bradycardia requiring intervention, % Riker RR, et al.

JAMA.

2009;301(5):489-499.

Midazolam (N = 122)

75.1

4.1

5.6

49 18.9

0.8

DEX (N = 244)

77.3

3.5

3.7

63 42.2

4.9

P-

Value

0.18

0.01

0.01

0.02

0.001

0.07

Physiology of

a 2

Adrenoceptors

a

2A

a

2A Anxiolysis

a

2C X

? a

2B

a

2A

a

2B X ?

a

2B

Adapted from Kamibayashi T, Maze M.

Anesthesiology

. 2000;93:1346-1349. a

2A

Applications for a

2

Agonist

• Surgical – Bariatric surgery – CV surgery – Neurosurgery • Endoscopic – Bronchoscopy – Fiberoptic intubation – Colonoscopy

MAC with Dexmedetomidine

• Randomized, prospective, double-blind, placebo-controlled, multicenter • 326 pts undergoing MAC for surgery (orthopedic, ophthalmic, vascular, excision of lesions, others < 10%) • All patients sedated – Observer’s Assessment of Alertness/Sedation Scale (OAA/S ) to < 4 • Sedation with – Dexmedetomidine ± rescue midazolam – Placebo + rescue midazolam • Fentanyl PRN for pain MAC = Monitored anesthesia care Candiotti KA, et al; MAC Study Group

. Anesth Analg

. 2010;110(1):47-56. 35

Dexmedetomidine Reduces Fentanyl

200 150

and Midazolam Use During MAC

5

4,1

144.4

Fentanyl Use Midazolam Use

4 3 100 2

* 1,4

50 1

* 0.9

0 0

100

Placebo

88,9

Dex 0.5

Dex 1.0

100 Placebo

96,8

Dex 0.5

Dex 1.0

75 * 59,0

75

* 59,7 50 * 42,6

50

* 45.7

25

25

0

0 Placebo Dex 0.5

Dex 1.0

Placebo Dex 0.5

Dex 1.0

*P

< 0.001 compared with placebo, MAC = monitored anesthesia care Candiotti KA, et al; MAC Study Group.

Anesth Analg

. 2010;110(1):47-56.

Agent Class

GABA agonist

Example

Benzodiazepine Midazolam GABA agonist

Drugs for Fiberoptic Intubation

Benzodiazepine Propofol

Advantages

• Quick onset • Injection not painful • Short duration • Quick onset Opioid a 2 Agonist Fentanyl Remifentanil Dexmedetomidine • Analgesic • Cough suppressive • Pt easily arousable • Anxiolytic • Analgesic • No resp depression

Considerations

• Not analgesic • Airway reflexes persist • Respiratory depression • Unconsciousness • Decreased blood pressure & CO • Increased HR • Respiratory depression • Transient hypertension • Hypotension • Bradycardia Summary courtesy of Pratik Pandharipande, MD.

Dexmedetomidine Increases Comfort in AFOI

• Double-blinded randomized trial • Midazolam +/- dexmedetomidine • Awake fiberoptic intubation (AFOI) • Patient comfort rated by 2 observers

n = 24 n = 31 Pre oxygenation Introduction of scope

Bergese SD, et al.

J Clin Anesth

. 2010;22(1):35-40.

Introduction of ET tube

Sedation for AFOI

Conclusions

• Compared to placebo, dexmedetomidine reduces the amount of BZD in patients with high risk airway compromise in AFOI • Dexmedetomidine in combination with low doses of midazolam is more effective than midazolam alone for sedation in AFOI

Fentanyl vs Dexmedetomidine in Bariatric Surgery

• 20 morbidly obese patients • Roux-en-Y gastric bypass surgery • All received midazolam, desflurane to maintain BIS at 45 –50, and intraoperative analgesics – Fentanyl (n = 10) 0.5 µg/kg bolus, 0.5 µg/kg/h (group 1) – Dexmedetomidine (n = 10) 0.5 µg/kg bolus, 0.4 µg/kg/h (group 2) • Dexmedetomidine associated with – Lower desflurane requirement for BIS maintenance – Decreased surgical BP and HR – Lower postoperative pain and morphine use (up to 2 h) Feld JM, et al.

J Clin Anesthesia.

2006;18:24-28.

Dexmedetomidine in Bariatric Surgery

• 80 morbidly obese patients • Gastric banding or gastric bypass surgery • Prospective dose ranging study • Medication – Celecoxib – Midazolam 400 mg 20 µg/kg po IV – Propofol – Desflurane 1.25 mg/kg 4% IV inspired – Dexmedetomidine 0, 0.2, 0.4, 0.8 µg/kg/h IV Tufanogullari B, et al.

Anesth Analg

. 2008;106:1741-1748.

Dexmedetomidine in Bariatric Surgery: Results

• More dex 0.8 patients required rescue phenylephrine for hypotension than control pts (50% vs 20%,

P

< 0.05) • All dex groups – Required less desflurane (19–22%) – Had lower MAP for 45’ post-op – Required less fentanyl after awakening (36–42%) – Had less emetic symptoms post-op • No clinical difference – Emergence from anesthesia – Post-op self-administered morphine and pain scores – Length of stay in post-anesthesia care unit – Length of stay in hospital Tufanogullari B, et al.

Anesth Analg

. 2008;106:1741-1748.

Neurological Surgery Desirable Properties for Sedatives

• Preservation of intracranial hemodynamics • Hemodynamic stability • Noninterference with neurophysiologic monitoring • Cooperative sedation (for functional neurosurgery) • Controllability (rapid onset and offset of effect) • Neuroprotection • Decreased awareness (by the patient) • Decrease oxygen consumption

Characteristics of Cooperative Sedation for Neurosurgery

• Patients easily transition from sleep to wakefulness and task performance when aroused • Patients can resume rest when not stimulated • Most useful during procedures in which communication with the patient must be maintained, facilitates patient participation in therapeutic maneuvers • Reduces risk of drug-induced complications Bekker A, et al.

Neurosurgery.

2005;57(1 Suppl):1-10.

Current Sedatives for Awake Craniotomy

Bonhomme V, et al.

Eur J Anaesthesiol.

2009;26(11):906-912.

Sedation During Awake Craniotomy

Is Dex Compatible With Neurocognitive Testing?

Patient Number Indication Dex Load, μg/kg Dex Infusion, μg/kg.h

Mean MDZ, mg Mean Fentanyl, μg Other Anesthesia Cognitive Test Test successful?

Bekker 2001 1 Neoplasm 1 0.4, 0.2, 0.1

100 Prop, N 2 O, Sevo Language 1/1 Bustillo 2002 5 AVM 0 or 1 0.2

–0.7

2.8

160 (flumazenil) Wada 0/5 Lotto 2003 Ard 2003 Ard 2005 11 Tumor, epilepsy, aneurysm 1 2 Pediatric epilepsy 0.6

0.5, 0.2, 0.1

Tumor, epilepsy 0.5

0.1

17 –0.4

1 100 1.7 (in 6 pts) 191 (in 16 pts) Prop Language 10/11 Prop, N 2 O, sevo Language 2/2 Prop, N 2 O, sevo Language 17/17 Bekker AY, et al.

Anesth Analg

. 2001;92(5):1251-1253.

Bustillo MA, et al.

J Neurosurg Anesthesiol

. 2002;14(3):209-212.

Lotto M, et al.

Anesthesiology.

2003; 99: A356.

Ard J, et al.

J Neurosurg Anesthesiol

. 2003;15(3):263-266.

Ard JL, et al.

Surg Neurol.

2005;63(2):114-116.

AVM = arteriovenous malformation Prop = propofol Sevo = sevoflurane

Implanting Deep Brain Stimulator for Parkinson’s Disease

• Sedation is demanding – Recordings of movement-related neurons – Preservation of Parkinson’s symptoms for DBS localization – Patient cooperation – Halo restricts movement, respiratory depression problematic • GABAergic sedatives (MDZ, propofol) not useful – Ameliorate tremor and rigidity (precludes mapping & testing) – Impair consciousness – May cause respiratory depression Rozet I, et al.

Anesth Analg.

2006;103(5):1224-1228.

Implanting Deep Brain Stimulator for Parkinson’s Disease

• Retrospective study with dexmedetomidine – Control (no sedative) – Dex (0.1-0.3 mcg/kg.h, more to goal [OAA/S = 4]) • Results n = 8 patients n = 11 patients – Microelectrode recordings unimpaired by dex – Surgical time shorter with dex (4 vs 6 h,

P

= 0.05) – Less intraoperative use of antihypertensives (100% vs 54%,

P =

0.048) – Dex preserved clinical signs of Parkinson’s disease  Tremor  Rigidity  Bradykinesia • Study limitations – Small – Observational – Only perioperative outcomes presented Rozet I, et al.

Anesth Analg.

2006;103(5):1224-1228.

Implanting Deep Brain Stimulator for Parkinson’s Disease

• Retrospective analysis of 258 procedures (250 patients) • Patients with motor disorders, 68% PD • Propofol most common sedative, 91% • Propofol used almost exclusively in the first 30 to 45 minutes to facilitate head-frame placement Khatib R, et al.

J Neurosurg Anesthesiol

. 2008;20:36-40.

Neurosurgery Summary

• Neurosurgery presents special challenges for sedation – Preserve cerebral hemodynamic stability – Maintain patient consciousness for some procedures • Oversedation presents risks – Delirium – Increased ICU LOS – Lack of patient interaction during procedure • Emerging combinations of anesthetic and sedative compounds have attractive properties for addressing these unique requirements

Case Presentation

• 64-year-old female with pulsatile mass left shoulder • 67-year-old severe pump failure with poor prognosis • 71-year-old BZD and opioid dependent female for MVR Penney R.

AANA J

. 2010;78(6):446-450.

Thank You!