Solare Einstrahlung auf der Erde - uni

Download Report

Transcript Solare Einstrahlung auf der Erde - uni

3.2
Solare Einstrahlung auf der Erde
3.21 The revolution of the earth around the sun
3.22 Solare Einstrahlung
.221 Wo steht die Sonne
.222 Streuung und Absorption der Solarstrahlung (Rayleigh, Angström,Linke)
.223 Diffuse und direkte Solarstrahlung (Liu Jordan,Reindl,Perez)
[.224 Verschattung und Bodenreflektion]
3.23 Maps of horizontal surface global radiation
Welt, Europa, Deutschland, Saarheimat
3.24 Simulationsprogramme
.251 Excelblatt: Modellierung des Sonnenenergie - Dargebotes
.252 kommerzielle Simulationsprogramme
(hübsch, vermutlich korrekt, aber undurchsichtig und für Außergewöhnliches nicht zu gebrauchen)
3.23
Maps of horizontal surface global radiation
.231
World
.232 Europe
.233 Germany
.234 local: geliebte Saarheimat
3.231 World
World Map of mean global Solar Irradiance
BezugsQuelle: University of Columbia, http://www.ldeo.columbia.edu/edu/dees/U4735/lectures/14.html Prof. Pitman:Energy:lecture14
3.232 Europe
Europe
Maps of horizontal surface global radiation
annual,
March, June, September, December
Angaben in [ kWh/ m2 ] für mittlere tägliche Einstrahlung
/ Palz-Greif 96: European Solar Radiation Atlas ,p. 322 -326
/ Palz-Greif 96: European Solar Radiation Atlas ,p. 322
/ Palz-Greif 96: European Solar Radiation Atlas ,p. 323
/ Palz-Greif 96: European Solar Radiation Atlas,p.324
/ Palz-Greif 96: European Solar Radiation Atlas ,p. 325
/ Palz-Greif 96: European Solar Radiation Atlas ,p. 326
3.233
Solarstrahlung in Deutschland
Angaben in [ kWh/ m2 ] für mittlere tägliche Einstrahlung
Jahresummen
der Globalstrahlung
in Deutschland
Saarbrücken
1050 – 1100
[kWh/m^2/a]
Quelle: RWE-Bauhandbuch 2004, Abb.17.6
Jahressummen der Globalstrahlung auf verschieden
orientierten Flächen

in [kWh/(m2a)]

Quelle: RWE-Bauhandbuch 2004, p. 17/7; Abb.17.7
Standort: Berlin , Breitengrad = 52°N
Sonnenbahnen zu unterschiedlichen Jahreszeiten
Standort: Berlin , Breitengrad = 52°N , Zeit: MEZ
Quelle: RWE-Bauhandbuch 2004, p. 17/5; Abb.17.3
Sonnenbahndiagramm für Berlin, 52°N
-90°
0°
+90°
Standort: Berlin , Breitengrad = 52.3°N
Quelle:V. Quaschning 2003: Regenerative Energiesysteme(3.A.), Hanser Verlag München, ISBN=3-446-24983-8, Bild 2.10,p.53
In Deutschland überwiegt die diffuse Solarstrahlung
Quelle: RWE-Bauhandbuch 2004, p. 17/6; Abb.17.5
Jahresummen der Globalstrahlung
Mittelwerte
Saarbrücken
1050 – 1100
im Superjahr 2003
SB
1290
[kWh/m^2/a]
sorry, that I had to confound different sources with a different colour-scale
3.234
Regionale Solarstahlung im Saarland
Bericht über eine Messkampagne im Rahmen eines EU-Projektes
Synchrone Kurzzeitmessungen (30 sec) an 15 Stationen
Staatliches Institut
für Gesundheit und Umwelt
(SIGU)
Quelle:
Direktor: Dr. rer. nat. Gerhard Luther
66117 Saarbrücken
CONSEQUENCES OF
DECENTRALISED PV ON
LOCAL NETWORK
MANAGEMENT
FINAL REPORT
01.04.1996
Authors:
Dr. rer. nat. Gerhard Luther
Dipl.-Phys. Frank Schirra
Supported by: Commission of the European Communities
Contract-No.: JOU2-CT92-0018
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Titelblatt
_1. Measuremenmts
Short Time Measurement (30 sec)
of Global Solar Energy at horizontal plane
over 2.5 years
at 15 stations in the Region of Saarbrücken,
Germany
Relative Coordinates of Measuring Stations
North [km]
20
12
15
9
10
8
5
11
1
0
2
13
6
-5
-10
10
15
-15
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
East [km]
Relative coordinates of all measuring stations in relation to our Institute in Saarbrücken (Station
2 at (0, 0)). Coordinates of station 2: Longitude= 6°58’ ; Latitude=49° 14’
U-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Figure I.1-1, p.7
Relative Coordinates of Stations in the Near Grid
0,4
North [km]
7
0,2
2
0
3
-0,2
-0,4
E
-0,6
5
-0,8
-1
-1,2
-1,4
6
-1,6
0
0,5
1
1,5
4
2
2,5
3
3,5
4
4,5
5
East [km]
Figure I.1-2: Relative coordinates of measuring stations in the near distance-grid
in relation to our Institute in Saarbrücken (Station 2 at (0, 0))
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Figure I.1-2, p.7
_2. Some Characteristic Patterns of global solar irradiance
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Chapter 2.2, p.42 ff
Inspection of our solar radiation atlas gives rise to 8 main radiation patterns.
In all diagrams, we confine ourselfs to the following time-range:
Days: 931001 – 950930
Time: 08:30 - 15:10 fixed UTC-time (but slightly varying local solar time)
In the following slides we give only some examples
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; p.42
Pattern 1 :
Percentage of days:
52%
Strong uniform oscillations
over the whole time range under consideration.
In the mean, the difference between minimum and maximum
amplitudes is 200 W/m2.
Less pronounced oscillations occur at the margins of the time range.
This is characterstic for a day with blue sky, compact clouds drifting
uniformly over the region.
The time intervall between successive minima or maxima varies
between 10 and 50 minutes.
Seasonal dependence:
During summer days the maximum of the curve is located mainly above 600 W/m2,
On the other days it is clearly below.
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; p.43
Pattern 1 - Strong uniform oscillations over the whole time-period
Global Radiation in the Region of Saarbrücken at 950621
1400
1200
1000
W/m^2
800
600
max
mean
min
0
400
200
0
21,36
21,41
21,46
21,51
solar day
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig. III.2.2, p.44
21,56
21,61
21,66
Pattern 1 - Strong uniform oscillations over the whole time-period
Global Radiation in the Region of Saarbrücken at 950621
1400
1200
1000
W/m^2
800
600
max
mean
min
5 ma
10 ma
0
400
200
0
21,30
21,35
21,40
21,45
21,50
21,55
solar day
Pattern 1 - Same as fig. III.2-2,
but moving averages over 2.5 min and 5 min included
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig. III.2-.2a, p.45
21,60
21,65
21,70
Pattern 1 - Strong uniform oscillations over the whole time-period.
Near distance grid
Global Radiation in the Region of Saarbrücken at 950621
Near Stations: 2,3,4,5,6,7,14
1400
1200
1000
W/m^2
800
max
mean
min
0
600
400
200
0
21,36
21,41
21,46
21,51
21,56
21,61
solar day
Pattern 1 - Strong uniform oscillations over the whole time-period
for stations in the near distance-grid
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig. III.2-.3, p.46
21,66
Pattern 1 - Strong uniform oscillations over the whole time-period.
Far distance grid
Global Radiation in the Region of Saarbrücken at 950621
Far Stations: 1,6,8,9,10,11,12,13,15
1400
1200
1000
W/m^2
800
600
400
max
mean
min
0
200
0
21,36
21,41
21,46
21,51
21,56
solar day
Figure III.2-4: Pattern 1 - Strong uniform oscillations over the whole time-period for stations in the far-distance grid
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig. III.2-.4, p.47
21,61
21,66
Pattern 2 :
Percentage of days:
5%
Clear Day: Smooth parabolic curve
with at most only minor disturbances.
The maximum of the curve is located above 600 W/m2 ,
with only a few exceptions mainly during winter days.
This is characterstic for a clear day with no clouds.
Even the regional maximum and minimum do not show strong fluctuations,
-indeed, a very sunny summer-day.
Seasonal dependence:
During summer days the maximum of the curve is located mainly above 600 W/m2,
On the other days it is clearly below.
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; p.43
Pattern 2: Smooth curve with minor fluctuations all Stations
Global Radiation in the Region of Saarbrücken at 950810
1200
1000
W/m^2
800
max
mean
min
0
600
400
200
0
10,36
10,41
10,46
10,51
solar day
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig. III.2-.5, p.48
10,56
10,61
10,6
Pattern 3 :
Percentage of days:
12%
Overcast Day: Smooth almost straight curve
The maximum of the radiation does rarely exceed 100 W/m2.
This pattern mainly occurs during the cold season and seems to indicate a
uniform cloud coverage in the region of observation.
The cloud-coverage does not seem to have remarkable gaps
and is more or less of uniform thickness.
Seasonal dependence:
Most of the days showing such a pattern belong to the time
between October and March.
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; p.43
Pattern 3 - Overcast Day: Smooth almost straight curve
Global Radiation in the Region of Saarbrücken at 950531
1400
1200
1000
W/m^2
800
600
400
max
mean
min
0
200
0
31,36
31,41
31,46
31,51
31,56
solar day
Pattern 3 - Smooth curve with low maximum
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig. III.2-.8 p.51
31,61
31,66
Die anderen Klassen sind mehr oder weniger Kombinationen der vorgenannten
The Bimodal Structure of the Regional Solar Energy
EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“;
Daily "snapshots“,
taken from
12.30 to 12.40 UTC
during all 234 days
between 15.5 and 31.7.
in 1993, 1994 and 1995.
Frequency distribution and cumulated frequency of the clearness index
14
100
unselected
90
12
12.30 to 12.40 UTC
during all 234 days
between 15.5 and 31.7.
in 1993, 1994 and 1995.
10
Frequency [%]
Daily "snapshots“,
taken from
70
30 sec
8
60
50
6
40
30
4
20
2
10
Airmass = ca. 1.1
1120
1000
880
760
640
520
400
280
160
0
40
0
Clearness Index [Promille]
Frequency distribution and cumulated frequency of the clearness index, measured simultaneously at the 9
stations of the far-distance grid in 30 second time intervals for an airmass of am=1.1 . The daily "snapshots" are
taken from 12.30 to 12.40 UTC during all 234 days between 15.5 and 31.7. in 1993, 1994 and 1995.
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig.III.3.2
Cumulated Frequency [%]
80
Classification of the clearness index distribution:
Table III.3-1:
Class
Classification of the distributions of kt in 234 daily 10 minute intervals
with am = 1.1 .
subclass kt_ mean
PL
PR
Unimodal
low
high
PL_broad
PR_broad
Bimodal
BM
span kt_min
< 0.2
< 0.2
> 0.2
> 0.2
kt_max frequency
< 0.6
6%
10%
12%
3%
31%
> 0.6
69%
> 0.4
< 0.4
Daily "snapshots“, taken from 12.30 to 12.40 UTC during all 234 days
between 15.5 and 31.7. in 1993, 1994 and 1995.
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Table 3.1
Bimodal Class: days with bimodal distribution
100
12
Class "BIMODAL"
90
Max > 600; Min < 400
10
80
Daily "snapshots“,
taken from
between 15.5 and 31.7.
in 1993, 1994 and 1995.
60
50
6
30 sec
40
Cumulated Frequency [%]
during all 234 days
Frequency [%]
12.30 to 12.40 UTC
70
8
4
30
20
2
Airmass = ca. 1.1
10
0
1160
1080
1000
920
840
760
680
600
520
440
360
280
200
120
40
0
Clearness-Index [Promille]
Kt values kt only for the distributions belonging to the bimodal class of table 1 (with kt_maximum < 600 [promille] and
kt_minimum < 400 [promille] (160 snapshots out of the 234 represented in Fig III.3.2. .
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig.III.3.3
bimodal class:
Positional parameters: Maximum, Mean, Minimum
1200
Clearness Index [promille]
1000
800
bimodal
600
Max
Mean
Min
Max > 600; Min < 400
400
200
0
1
21
41
61
81
Days
101
121
141
Positional parameters kt_max, kt_mean and kt_min of the distributions of clearness index belonging to the
bimodal class. The days are sorted for ascending kt_mean.
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig.III.3.4
Unimodal class:
Positional parameters
1000
Clearness Index [Promille]
900
PL_broad
800
700
600
PL
PR
500
400
300
Max
Mean
PR_broad
200
Min
100
0
1
11
21
31
41
51
61
71
Days
Positional parameters kt_max, kt_mean and kt_min of the distributions of clearness index belonging to the
unimodal class. In each subclass (c.f. Table III.3-1) the days are sorted for ascending kt_mean.
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig.III.3.5
Daily 6 hours time range:
from
9:00 to 15.00 UTC
during all 234 days
between 15.5 and 31.7.
in 1993, 1994 and 1995.
Frequency distribution and cumulated frequency of the clearness index
12
100
90
unselected
during all 234 days
between 15.5 and 31.7.
in 1993, 1994 and 1995.
80
70
8
30 sec
6
60
50
40
4
30
Cumulated Frequency [%]
Daily 6 hours time range:
9:00 to 15.00 UTC
Frequency [%]
10
20
2
10
0
1120
1000
880
760
640
520
400
280
160
40
0
Clearness-Index [Promille]
Frequency distribution and cumulated frequency of the clearness index for the time-range 9:00 15:00 UTC (this and the following diagrams). All 234 days are taken into account .
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig.III.3.7
Classification of the clearness index distribution:
Table III.3-2: Classification of the distributions of kt in 234 daily 6 hour intervals
(9:00 - 15:00 UTC)
Class
subclass kt_ mean
PL
PR
Unimodal
PL_broad
PR_broad
Bimodal
low
high
span kt_min
< 0.2
> 0.2
> 0.2
BM
kt_max frequency
< 0.65
0%
1.7%
4.7%
2.5%
9%
> 0.65
91%
> 0.4
< 0.4
Daily 6 hours time range: from 9:00 to 15.00 UTC in all 234 days between 15.5 and 31.7.
in 1993, 1994 and 1995.
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Table 3.2, p.91
Bimodal Class: days with bimodal distribution
Joint Frequency for Bimodal Days
12
in 1993, 1994 and 1995.
Frequency [%]
between 15.5 and 31.7.
Max > 650; Min < 400
10
80
70
8
60
30 sec
50
6
40
4
30
Cumulated Frequency [%]
90
Daily 6 hours time range:
9:00 to 15.00 UTC
during “bimodal” days
100
20
2
10
1120
1000
880
760
640
520
400
280
160
0
40
0
Clearness Index [Promille]
Joint frequency distribution and cumulated frequency for days with bimodal distribution.
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig.III.3.8, p.91
bimodal class:
Positional parameters: Maximum, Mean, Minimum
1200
1000
800
Max
bimodal
kt 600
Mw
Max > 650; Min < 400
400
Min
200
0
1
21
41
61
81
101
121
days
141
161
181
201
Positional parameters kt_max, kt_mean and kt_min of the distributions of clearness index belonging to the
bimodal class. The days are sorted for ascending kt_mean.
Time range: 9:00 - 15:00 UTC
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig.III.3.9
Unimodal class:
Positional parameters
1000
900
800
700
600
Max
kt 500
Mw
400
Min
300
PL_broad
200
PR_broad
PR
100
0
1
3
5
7
9
11
days
13
15
17
19
21
Positional parameters kt_max, kt_mean and kt_min for non-bimodal (unimodal) distributions.
Time range: 9:00 - 15:00 UTC
Quelle: EU-Contract JOU2-CT92-0018, Details siehe Blatt „Quelle“; Fig.III.3.10, p.92
3.24
Modellierung und Simulationsprogramme
3.241
Modellierung des Sonnenenergie Dargebotes
auf einem Excel- Kalkulationsblattt
Übersicht zum Solarangebot
Sender
Solarstrahlung extraterrestrisch
Empfänger
Kollektor bestimmt durch:
1. Normalvektor auf Fläche
Sonnenvektor:
{I0, Azimut, Sonnenhöhe}
{Fläche, Azimut, Neigung zur Horizontalen}
2. Verschattung
3. Boden als Reflektorfläche
Transmission durch Atmosphäre:
Streuung, Absorption
Output:
1 . Direkte Strahlung, Diffuse Streustrahlung
G=I +D ,
D ist nicht isotrop !
2 . Frequenzfilter
spektrale Transmission
unterschiedlich für I und D.
Ermittlung der verfügbaren Solarstrahlung
Sender
Solarstrahlung extraterrestrisch
Input: DA$=„JJMMTT.hhmmss“
Datum + wahreOrtszeit
Output: Sonnenvektor:
{ok}
{I0, Azimut, Sonnenhöhe}
Empfänger
Kollektor bestimmt durch:
1. Normalvektor auf Fläche
{ok}
{Fläche, Azimut, Neigung zur Horizontalen}
2. Verschattung {etwas aufwendig, aber ok}
3. Boden als Reflektorfläche {schwierig}
Transmission durch Atmosphäre:
Messwert meist nur: Globalstrahlung G(0)
(1) aus statistischer Korrelation: D(0) {Liu-Jordan + Nachfolger, Reindl-Duffi-Beckman 89}
(2) aus Modell : Transponieren auf Kollektorebene: D(Kollektor) {Peretz Modell}
I(Kollektor) {trivial, geometrisch}
G(Kollektor) = D(Kollektor) + I(Kollektor)
1
1
2
Beispiel für Berechnungskern
auf einem Excel-Kalkulationsblatt
3
4
2
3
4
5
6
8
9
10
horizontale Globalstrahlung:
aktuelle Werte
G_0=
372,1
kt=
[W/m^2]
0,50
8
Referenzwerte für Korrelation: (Stundenmittel oder Äquivalente wie z.B. temporal-regionales Gleitmittel)
9
10
11
12
Referenz-kt
kt_Ref=
0,6000
G_0_ref= 446,543
kT-Wert als Input für G-D Korrelation, z.B. temporal-regionales GleitmittelMittel
Sonnenvektor:
I0_et_normal 1328,35 [W/m^2]
13
Datum.Zeit
14
15
UTC-Zeit!
I0_0= 744,238
extraterrestrisch_horizontal
DAZ= 990601.154030
airmass
solarer Azimut
KollektorFläche
19
20
Neigungswinkel
betaKol=
FlächenNormale
AziKol=
28
29
30
31
32
33
34
[W/m^2]
30,00
84,663
[°]
Solare Inzidenz auf Kollekt. Teta_i_arc=
[°] Nord=+-180, West=+90
Standort:
Latitude=
49,2
Longitude= 7
nach Standortänderung muss RESET gemacht werden,
Diffuse Strahlung_horizontal_Referenz:
D_0_ref = 200,84
Stundenwerte:
84,66 [°]
34,07
55,93
0,45
0,45
25,93 [°]
test
nn
aktuelle Werte
D_0=
200,84
Direkte Strahlung_horizontal:
I_0_ref= 245,70 [W/m^2]
[W/m^2]
I_0=
[W/m^2]
171,28
[W/m^2]
2. Perez Modell (diffuse Strahlung auf geneigter Ebene)
37
Ergebnis:
D_Kol=
237,40
I_Kol= 274,9
G_Kol= 512,3
[W/m^2]
38 (Gl.(9) in /PISMS90, p.281/)
43
44
[°] Süd=0, West=+90
1. Reindl-Korrelation (diffuser Anteil auf horzontaler Ebene)
/Perez_PISMS90_SE44-5p271/, zitiert in /Quaschning 2003,Tabelle 2.10p57/
41
42
84,66
Altitude=
35
36
39
40
AZI
Azi_arc= 1,477655
Sonnenhöhe
0,594715
Zenitdistanz Z_arc= 0,976081
am= 1,741
17
18
27
13
0. Input Data
6
7
25
26
12
Version:2005__0617,09,07
5
21
22
23
24
11
Strahlung auf geneigter Ebene
16
Goto OriginalKalkulationsBlatt
7
Perez-parameter:
kappa_P=
eps_P=
delta_P=
eps_cat=
1,041
1,7734
0,2632
4
a_P=
b_P=
0,899
0,560
Brightening coefficients:
F1_P= 0,329274
F2_P= 0,055329
(Gl.(9) in /
Die Spalten, in denen die Inputs und dieGleichungen stehen
15
3
4
16
17
18
Spalte 3
0. Input Data
5
horizontale Globalstrahlung:
6
7
aktuelle Werte
G_0=
8
Referenzwerte für Korrelation. (Stundenmittel oder Äquivalente wie z.B. temporal-regionales Gleitmittel)
350
0.6
9 Referenz-kt kt_Ref=
10 kT-Wert als Input für G-D Korrelation, z.B. temporal-regionales GleitmittelMittel
11
12 Sonnenvektor:
19
5
8
9 G_0_ref= =kt_Ref*I0_0
10
11
12
I0_et_normal
=I0_et_normal(DAZ)
14
21
22
23
24 Standort:
25
26
27
Latitude=
30
=Azi_arc*180/PI()
49.2
1. Reindl-Korrelation (diffuser Anteil auf horzontaler Ebene)
28
29 Diffuse Strahlung_horizontal_Referenz:
D_0_ref = =Dh_0_Reindl(DAZ, kt_Ref)
30 Stundenwerte:
31
32 aktuelle Werte
D_0=
33
=MIN(D_0_ref,G_0)
[°]19 Teta_i_arc=
21
22
23
24 Altitude=
25
26
27
28
Direkte29
Strahlung_horizontal:
[W/m^2]
30 I_0_ref= =kt_Ref*I0_0-D_0_ref
31
[W/m^2]
32 I_0=
35
36
=D_0*((1-F1_P)*(1+COS(betaKol*PI()/180))/2 +F1_P*a_P/b_P+F2_P*SIN(betaKol*PI()/180)) [W/m^2]
37 I_Kol=
(Gl.(9)38
in /PISMS90, p.281/)
39
40 Perez-parameter:
kappa_P=
41
42
43
=G_0-D_0
33
34
Ergebnis: D_Kol=
I_Kol=
=EinfallsWinkel(DAZ, AziKol, betaKol)*PI()/180
AziKol, betaKol)*PI()/180
[°]20
Nord=+-180, West=+90
=teta_gen(DAZ,
35 /Perez_PISMS90_SE44-5p271/, zitiert in /Quaschning 2003,Tabelle 2.10p57/
36
37
AZI =Azi(DAZ)
Azi_arc= =Azi(DAZ)*PI()/180
=SolHoehe(DAZ)*PI()/180
15
[W/m^2]
Sonnenhöhe
16
Z_arc= =PI()/180*(90-SolHoehe(DAZ))
17
18
2. Perez Modell (diffuse Strahlung auf geneigter Ebene)
34
=G_0/I0_0
7
13
19 Neigungswinkel
betaKol=
20 Ausrichtung:Azimut
AziKol=
Spalte 10
6 kt=
[W/m^2]
UTC-Zeit!
15 extraterrestrisch_horizontal
I0_0= =I0_et(DAZ)
16
17
airmass
am= =airmass(DAZ)
18 KollektorFlächen
14
24
3
4
DAZ= 990601.154030
13 Datum.Zeit
23
1.041
=((D_0+I_0/COS(Z_arc))/D_0 +kappa_P*Z_arc^3)/(1+kappa_P*Z_arc^3)
eps_P=
delta_P=
=am*D_0/(I0_0/COS(Z_arc))
eps_cat= =eps_Bin(eps_P)
38
=I_0*COS(Teta_i_arc)/COS(Z_arc)
G_Kol= =D_Kol+I_Kol
39
40
Brightening
coefficients:
41 F1_P=
42 F2_P=
=F1_Perez(eps_P,delta_P,Z_arc)
=F2_Perez(eps_P,delta_P,Z_arc)
43
44 a_P=
45 b_P=
=MAX(0,COS(Teta_i_arc))
=MAX(0.087,COS(Z_arc))