Transcript Document
Powerful Full-Text Search with Solr Yonik Seeley [email protected] Web 2.0 Expo, Berlin 8 November 2007 download at http://www.apache.org/~yonik What is Lucene • High performance, scalable, full-text search library • Focus: Indexing + Searching Documents – “Document” is just a list of name+value pairs • No crawlers or document parsing • Flexible Text Analysis (tokenizers + token filters) • 100% Java, no dependencies, no config files What is Solr • • • • • • • • • • A full text search server based on Lucene XML/HTTP, JSON Interfaces Faceted Search (category counting) Flexible data schema to define types and fields Hit Highlighting Configurable Advanced Caching Index Replication Extensible Open Architecture, Plugins Web Administration Interface Written in Java5, deployable as a WAR Basic App Indexer Document super_name: Mr. Fantastic name: Reed Richards category: superhero powers: elasticity http://solr/update Servlet Container admin HTML Webapp Query (powers:agility) Query Response (matching docs) http://solr/select update select XML response writer Solr JSON response writer XML Update Handler Standard request handler CSV Update Handler Custom request handler Lucene Indexing Data HTTP POST to http://localhost:8983/solr/update <add><doc> <field name=“id”>05991</field> <field name=“name”>Peter Parker</field> <field name=“supername”>Spider-Man</field> <field name=“category”>superhero</field> <field name=“powers”>agility</field> <field name=“powers”>spider-sense</field> </doc></add> Indexing CSV data Iron Man, Tony Stark, superhero, powered armor | flight Sandman, William Baker|Flint Marko, supervillain, sand transform Wolverine,James Howlett|Logan, superhero, healing|adamantium Magneto, Erik Lehnsherr, supervillain, magnetism|electricity http://localhost:8983/solr/update/csv? fieldnames=supername,name,category,powers &separator=, &f.name.split=true&f.name.separator=| &f.powers.split=true&f.powers.separator=| Data upload methods URL=http://localhost:8983/solr/update/csv • HTTP POST body (curl, HttpClient, etc) curl $URL -H 'Content-type:text/plain; charset=utf-8' --data-binary @info.csv • Multi-part file upload (browsers) • Request parameter ?stream.body=‘Cyclops, Scott Summers,…’ • Streaming from URL (must enable) ?stream.url=file://data/info.csv Indexing with SolrJ // Solr’s Java Client API… remote or embedded/local! SolrServer server = new CommonsHttpSolrServer("http://localhost:8983/solr"); SolrInputDocument doc = new SolrInputDocument(); doc.addField("supername","Daredevil"); doc.addField("name","Matt Murdock"); doc.addField(“category",“superhero"); server.add(doc); server.commit(); Deleting Documents • Delete by Id, most efficient <delete> <id>05591</id> <id>32552</id> </delete> • Delete by Query <delete> <query>category:supervillain</query> </delete> Commit • <commit/> makes changes visible – Triggers static cache warming in solrconfig.xml – Triggers autowarming from existing caches • <optimize/> same as commit, merges all index segments for faster searching _0.fnm _0.fdt _0.fdx _0.frq _0.tis _0.tii _0.prx _0.nrm _0_1.del Lucene Index Segments _1.fnm _1.fdt _1.fdx […] Searching http://localhost:8983/solr/select?q=powers:agility &start=0&rows=2&fl=supername,category <response> <result numFound=“427" start="0"> <doc> <str name=“supername">Spider-Man</str> <str name=“category”>superhero</str> </doc> <doc> <str name=“supername">Msytique</str> <str name=“category”>supervillain</str> </doc> </result> </response> Response Format • Add &wt=json for JSON formatted response {“result": {"numFound":427, "start":0, "docs": [ {“supername”:”Spider-Man”, “category”:”superhero”}, {“supername”:” Msytique”, “category”:” supervillain”} ] } • Also Python, Ruby, PHP, SerializedPHP, XSLT Scoring • • • • • • Query results are sorted by score descending VSM – Vector Space Model tf – term frequency: numer of matching terms in field lengthNorm – number of tokens in field idf – inverse document frequency coord – coordination factor, number of matching terms • document boost • query clause boost http://lucene.apache.org/java/docs/scoring.html Explain http://solr/select?q=super fast&indent=on&debugQuery=on <lst name="debug"> <lst name="explain"> <str name="id=Flash,internal_docid=6"> 0.16389132 = (MATCH) product of: 0.32778263 = (MATCH) sum of: 0.32778263 = (MATCH) weight(text:fast in 6), product of: 0.5012072 = queryWeight(text:fast), product of: 2.466337 = idf(docFreq=5) 0.20321926 = queryNorm 0.65398633 = (MATCH) fieldWeight(text:fast in 6), product of: 1.4142135 = tf(termFreq(text:fast)=2) 2.466337 = idf(docFreq=5) 0.1875 = fieldNorm(field=fast, doc=6) 0.5 = coord(1/2) </str> <str name="id=Superman,internal_docid=7"> 0.1365761 = (MATCH) product of: Lucene Query Syntax 1. justice league • Equiv: justice OR league • QueryParser default operator is “OR”/optional 2. +justice +league –name:aquaman • Equiv: justice AND league NOT name:aquaman 3. “justice league” –name:aquaman 4. title:spiderman^10 description:spiderman 5. description:“spiderman movie”~100 Lucene Query Examples2 1. releaseDate:[2000 TO 2007] 2. Wildcard searches: sup?r, su*r, super* 3. spider~ • • Fuzzy search: Levenshtein distance Optional minimum similarity: spider~0.7 4. *:* 5. (Superman AND “Lex Luthor”) OR (+Batman +Joker) DisMax Query Syntax • Good for handling raw user queries – Balanced quotes for phrase query – ‘+’ for required, ‘-’ for prohibited – Separates query terms from query structure http://solr/select?qt=dismax &q=super man // the user query &qf=title^3 subject^2 body // field to query &pf=title^2,body // fields to do phrase queries &ps=100 // slop for those phrase q’s &tie=.1 // multi-field match reward &mm=2 // # of terms that should match &bf=popularity // boost function DisMax Query Form • The expanded Lucene Query: +( DisjunctionMaxQuery( title:super^3 | subject:super^2 | body:super) DisjunctionMaxQuery( title:man^3 | subject:man^2 | body:man) ) DisjunctionMaxQuery(title:”super man”~100^2 body:”super man”~100) FunctionQuery(popularity) • Tip: set up your own request handler with default parameters to avoid clients having to specify them Function Query • Allows adding function of field value to score – Boost recently added or popular documents • • • • Current parser only supports function notation Example: log(sum(popularity,1)) sum, product, div, log, sqrt, abs, pow scale(x, target_min, target_max) – calculates min & max of x across all docs • map(x, min, max, target) – useful for dealing with defaults Boosted Query • Score is multiplied instead of added – New local params <!...> syntax added &q=<!boost b=sqrt(popularity)>super man • Parameter dereferencing in local params &q=<!boost b=$boost v=$userq> &boost=sqrt(popularity) &userq=super man Analysis & Search Relevancy Document Indexing Analysis Query Analysis LexCorp BFG-9000 Lex corp bfg9000 WhitespaceTokenizer LexCorp WhitespaceTokenizer BFG-9000 Lex WordDelimiterFilter catenateWords=1 Lex Corp BFG 9000 corp bfg9000 WordDelimiterFilter catenateWords=0 Lex corp bfg 9000 LexCorp LowercaseFilter lex corp bfg LowercaseFilter 9000 lex lexcorp A Match! corp bfg 9000 Configuring Relevancy <fieldType name="text" class="solr.TextField"> <analyzer> <tokenizer class="solr.WhitespaceTokenizerFactory"/> <filter class="solr.LowerCaseFilterFactory"/> <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt“/> <filter class="solr.StopFilterFactory“ words=“stopwords.txt”/> <filter class="solr.EnglishPorterFilterFactory" protected="protwords.txt"/> </analyzer> </fieldType> Field Definitions • Field Attributes: name, type, indexed, stored, multiValued, omitNorms, termVectors <field name="id“ type="string" indexed="true" stored="true"/> <field name="sku“ type="textTight” indexed="true" stored="true"/> <field name="name“ type="text“ indexed="true" stored="true"/> <field name=“inStock“ type=“boolean“ indexed="true“ stored=“false"/> <field name=“price“ type=“sfloat“ indexed="true“ stored=“false"/> <field name="category“ type="text_ws“ indexed="true" stored="true“ multiValued="true"/> • Dynamic Fields <dynamicField name="*_i" type="sint“ indexed="true" stored="true"/> <dynamicField name="*_s" type="string“ indexed="true" stored="true"/> <dynamicField name="*_t" type="text“ indexed="true" stored="true"/> copyField • Copies one field to another at index time • Usecase #1: Analyze same field different ways – copy into a field with a different analyzer – boost exact-case, exact-punctuation matches – language translations, thesaurus, soundex <field name=“title” type=“text”/> <field name=“title_exact” type=“text_exact” stored=“false”/> <copyField source=“title” dest=“title_exact”/> • Usecase #2: Index multiple fields into single searchable field Facet Query http://solr/select?q=foo&wt=json&indent=on &facet=true&facet.field=cat &facet.query=price:[0 TO 100] &facet.query=manu:IBM {"response":{"numFound":26,"start":0,"docs":[…]}, “facet_counts":{ "facet_queries":{ "price:[0 TO 100]":6, “manu:IBM":2}, "facet_fields":{ "cat":[ "electronics",14, "memory",3, "card",2, "connector",2] }}} Filters • Filters are restrictions in addition to the query • Use in faceting to narrow the results • Filters are cached separately for speed 1. User queries for memory, query sent to solr is &q=memory&fq=inStock:true&facet=true&… 2. User selects 1GB memory size &q=memory&fq=inStock:true&fq=size:1GB&… 3. User selects DDR2 memory type &q=memory&fq=inStock:true&fq=size:1GB &fq=type:DDR2&… Highlighting http://solr/select?q=lcd&wt=json&indent=on &hl=true&hl.fl=features {"response":{"numFound":5,"start":0,"docs":[ {"id":"3007WFP", “price”:899.95}, …] "highlighting":{ "3007WFP":{ "features":["30\" TFT active matrix <em>LCD</em>, 2560 x 1600” "VA902B":{ "features":["19\" TFT active matrix <em>LCD</em>, 8ms response time, 1280 x 1024 native resolution"]}}} MoreLikeThis • Selects documents that are “similar” to the documents matching the main query. &q=id:6H500F0 &mlt=true&mlt.fl=name,cat,features "moreLikeThis":{ "6H500F0":{"numFound":5,"start":0, "docs”: [ {"name":"Apple 60 GB iPod with Video Playback Black", "price":399.0, "inStock":true, "popularity":10, […] }, […] ] […] High Availability Dynamic HTML Generation Appservers HTTP search requests Load Balancer Solr Searchers Index Replication admin queries updates updates admin terminal Updater Solr Master DB Resources • WWW – http://lucene.apache.org/solr – http://lucene.apache.org/solr/tutorial.html – http://wiki.apache.org/solr/ • Mailing Lists – [email protected] – [email protected]