Strangeness in the Nucleon Newest Results from HAPPEx and G0

Download Report

Transcript Strangeness in the Nucleon Newest Results from HAPPEx and G0

Strangeness in the Nucleon
Newest Results
from HAPPEx and G0
• Physics case
• Electroweak Standard Model
• Experimental Aspects
• Results and Perspectives
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
1
Physics Case
•Nucleon Structure:
Valence quarks dressed by gluon
exchange and qq fluctuations.
Quark sea, key component on the
nucleon.
•Strangeness in the nucleon:
s quark flavor decouples from valence
quarks but may still be light enough
to contribute.
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
“Low Q” physics
2
Strange Quarks in the Nucleon
Strange sea measured in N scattering
Strange sea is well-known, but
contributions to nucleon matrix
elements are somewhat unsettled:
•Spin
polarized DIS
Inclusive: Ds = -0.08 ± 0.05
Semi-inclusive: Ds = 0.03 ± 0.03
•Strange mass
pN scattering: 0-30%
N ss N
•Strange vector Form Factor
Erice, Sept. 2007
N s   5 s N
D. Lhuillier - CEA Saclay

N s s N
3
Form Factors
Elastic scattering off a static potential (no spin):
d d
2

 F(q)
d d pt
(q)
Z(r)ddr
F(q) 
iq.r
3
e

(r)d
r


 Direct image of the charge distribution inside
limit of no recoil (Q2<M2).
the target, in the
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
4
Electromagnetic Form Factors
Nucleon target: 2S+1 form factors
e-
1 2 2
GE (Q )  QN  Q r  (Q4 )
6
GM (Q2 )  N  (Q2 )

(q)
p,n

2
Charge
Magnetization
FT
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
5
u-d Flavour Separation
 ,,pp 22 u,u p 11 dd, p

GEE,M
 G
GE,M
 G
GEE,M
,M 
E,M 
,M
G

3
3
3
3


22 u,n
11 du,n
,n
d
G

GEE,n,M

G

GEE,M
GE,M
G
,M 
E,M 
,M


33
33
e-
(q)
Charge
symmetry


QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
s quarks distributions? GEs(0) = 0, no other symmetry constraints…
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
6

Weak Form Factors
Z ,p
GE,M
(Q2 )
e-
Vector
Z0 (q)

 GAe (Q2 ),GP (Q2 )
Axial
3 flavors separation:

  , p 2 u
1 d
1 s
G

G

G

GE,M
 E,M
E,M
E ,M
3
3
3

s
2
p
n
Z

(1
4
sin

)G

G

G
 G
2 d
1 u
1 Ws
E,M
E,M
E,M
,n E,M
G

G

G

G
 E,M
E,M
E ,M
E,M
3
3
3

0 new probe of the nucleon, only assumes charge sym.
 8 2  u
 4 2  d
 4 2  s
 •Z Z
,p
 1 sin
W-G
Sensitive
to (s
s E,M
).  1 sin W GE,M  1 sin W GE,M
G•E,M
 3

 3

 3


Erice, Sept. 2007
D. Lhuillier - CEA Saclay
7
Parity Symmetry
•Electromagnetism
•Gravitation
•Strong interaction
O
•Weak interaction
Sym. miroir
ggg
r,p,E
g g g
-r,-p,-E
Pseudo-vector:
g g gg
=rLp,B
g g
+,+B
Scalar
m
+m
g g
h=.p
-h
Vector
:
:
Pseudo-scalar :
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
8
1957 !
T.D.Lee/C.N.Yang
Propose to test PV
in weak interactions
Measure a
Pseudoscalar…
C.S. Wu
 decay of
polarized 60Co
JP

M. Gell-Mann/R. Feynman e
Lee & Yang
(V-A) theory
M. Goldhaber
Left handed neutrino
Erice, Sept. 2007

D. Lhuillier - CEA Saclay
9
Electroweak Standard Model
f
Z0
(CERN, 1973)
f
Partial P in neutral weak current
 electroweak unification.
•Weak isospin group SU(2)L:
e  u
   
 L d L
JZ0 = J3 – sin2W Jem
e±
J+, J-, …. J3
SU(2)LxU(1)Y
W+, W-, …. Z0
W±


(V-A)
Erice, Sept. 2007
GF
g2
g  e,

2 8MW2
D. Lhuillier - CEA Saclay
cfV = T3 – 2sin2WQf
cfA = T3
10
-Z0 Interference
2
e-
e-
 = |MMZ
|2
(Q)
=
Z0 (Q)
+
Scale  ~ 1 fm
Q2
<<
GF
MZ ~
2
MZ2
<< M ~
4 p
Q2
Z0 contribution in the cross section is negligible…

Erice, Sept. 2007
D. Lhuillier - CEA Saclay

11
Parity Violating Asymmetry
Lee & Yang: measure a pseudoscalar quantity
APV, generated by helivcity flip of the e- beam
NL
NR
APV
Erice, Sept. 2007
M M Z*
NR  NL
GF Q2
6




10
!
2
NR  NL
M
4p 2
D. Lhuillier - CEA Saclay
12
E122@SLAC
b
ee-
PVDIS
2H
APV 
X
a
2
GF Q
a(x)  f (y)b(x)
2p
x  x Bjorken y  1 E / E
Isoscalar target: a and b ~ cst (@ large x)


a(x) 
C.Y. Prescott et al., 1978
3 
(2C1u  C1d )
10
3 
uv (x)  dv (x)
b(x)  (2C2u  C2d )

10 
u(x)  d(x) 
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
APV~10-4 ± 10-5
sin2W = 0.224 ± 0.020
13
Weak Form Factors
Proton target:
1
APVH
AE   GEpGEZ ,
GF Q2 AE  AM  AA
~ few parts per million
 

p
4p 2 
AM   GMp GMZ ,


AA   1  4 sin 2 W  'GMp GAe

Forward angle
4He
4
APVHe
target: GEs alone
Backward angle
2H

GF Q  2
GEs

sin W 
p
n 
2(G

G
p 2 
E
E ) 
2
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
target:
enhanced GAe sensitivity
2
H
PV
A
 p Ap   n An

 p  n
14
Experimental Strategies
SAMPLE
(MIT-Bates)
1998-02
HAPPEX
(JLab)
1998-99
HAPPEX II
(JLab)
2004-05
PVA4
(MAMI)
2002-08
G0
(JLab)
2003-06
Q2(GeV/c2)
0.04, 0.1
0.48
0.1
0.1, 0.23
0.12 - 1.0
Angle
B
F
F
F/B
F/B
Target
H, D
H
H, 4He
H,D
H, D
Separation
GMs,GA
Ges+0.4GMs
Ges, GMs
Ges, GMs
Ges, GMs,GA
G0 : Large , Particle id, large Q2 range
HAPPEx : small , integrating, single accurate Q2
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
15
Experimental Challenges
APV
1
1 Araw  Abeam  Pe Abkg f bkg
  Aexp  
Pe
Pe
1 f bkg
Aexp
Aexp


stat
1
Pe  APV  N
Goal: down to ~50 ppb absolute error and 2% relative

Erice, Sept. 2007
• High rate
• High beam polarization
• Control of beam asymmetries
• Background rejection
• Normalization
D. Lhuillier - CEA Saclay
16
« Table Top » Experiments
DAQ
No “external” instrumentation:
•Control of the polarized source
•Redundant beam monitoring
from injector to experimental
hall
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
17
The Polarized e- Source
•Optical pumping of strained GaAs
cathode produces highly-polarized
e- beam.
•“Strain” boosts polarization but
introduces anisotropy in response.
•Rapide and pseudorandom helicity flip.
•Pair asymmetry measured several
million times to reach stat. error.
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
18
Beam Asymmetries
Beam Axis
N R,L  dR,L
Intensity:
APV
N  I   N  I
  
A exp AI


N I N I
Position:

Typical sensitivity: 10ppm/m
• Azimuthally symmetric detector
DX=XR-XL
Erice, Sept. 2007
• Most h.c. beam asymmetries
trace back to differences in
preparation of circularly polarized
laser light at the source.
D. Lhuillier - CEA Saclay
19
PITA Effet
Polarization Induced Transport Asymmetry
Perfect ±/4 retardation
leads to perfect D.o.C.P.
•Now L/R states have opposite
sign linear components.
A common retardation offset
over-rotates one state,
under-rotates the other
Right helicity
Left helicity
•This couples to “asymmetric
transport” in the optics
system to produce an
intensity asymmetry.
This is the D phase
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
20
Intensity Asymmetry using RHWP
maximum
analyzing
power
Electron beam intensity
asymmetry (ppm)
minimum
analyzing
power
A rotatable /2 plate
downstream of the
P.C. allows arbitrary
orientation of DoLP
Rotating waveplate angle
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
4 term measures
Ana Power*DoLP
(from Pockels cell)
21
Optics
Table
High Pe
High Q.E.
Low Apower
Strategy
• Rapid, pseudorandom helicity flip.
controls
effective
analyzing
power
Intensity
Attenuator
Slow helicity
reversal
Tune
residual
linear pol.
(charge
Feedback)
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
•Careful config. to
reduce beam asym.
•Feedback systems
to zero residual
asym. measured in
exp. hall.
•Further cancellation
by slow helicity
reversals.
22
Feedback
Reduce remaining effects
Position (G0)
charge
Performances:
AI < 1 ppm
Dx ~ 1 nm
10 ppb final correction
Erice, Sept. 2007
Figures from K.Nakahara
Cates et al., NIM A vol. 278, p. 293 (1989)
T.B. Humensky et. al., NIM A 521, 261 (2004)
D. Lhuillier - CEA Saclay
23
Slow Reversals
Asymmetry (ppm)
Pure statistical distribution of
the pair asymmetries
Helicity Window Pair Asymmetry
Slug
Sign flip of APV under insertion /
removal of the half-wave plate at
the source
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
24
E~3GeV,
=6° Q2~0.1
GeV/c2
JLab Hall A
Polarimeters
Compton
1% syst
Continuous
Target
Møller
2% syst
400 W transverse flow
20 cm, LH2
20 cm, 200 psi 4He
Erice, Sept. 2007
High Resolution Spectrometer
S+QQDQ
D. Lhuillier - CEA Saclay
5 mstr over 4o-8o
25
Happex Detectors
Overlap the elastic line above the
Very clean separation of
elastic events by HRS optics  focal plane and integrate the flux
Elastic Rate:
1H:
PMT
100 x 600 mm
120 MHz
4He:
Cherenkov
cones
12 m dispersion
sweeps away
inelastic events
PMT
12 MHz
A
D
C

Large dispersion and heavy
shielding reduce backgrounds at

the focal plane
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
26
JLab Hall C
Detector
wheel
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
G0 beam
monitoring
girder
Superconducting
magnet
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
27
G0 Detectors
Forward angle configuration
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
protons
 GEs  GMs
Magnet
Q2=0.1-1.0 GeV/c2
Detectors

Inelastic
protons
Beam
elastic
protons
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
p+
Target
Erice, Sept. 2007
ToF histogram
D. Lhuillier - CEA Saclay
28
G0 Detectors
Backward angle configuration
 GMs ,GAe
CED + Cherenkov
FPD
electrons
e- beam
target
e~110°
Magnet

Beam
362
Q2
(GeV2)
0.23
686
0.62
Ee (MeV)
Target
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
29
Polarimetry
Main normalization error, Aexp = Pe.APV
- Moller polarimetry in hall C:
solid target saturated in high B field
1.3% relative accuracy
Interleaved runs at low current
- Compton polarimetry in hall A:
continuous monitoring
FOM strongly depends on Ebeam
1.0% relative accuracy @ 3GeV
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
30
Results @ Q2=0.1 GeV/c2
HAPPEX only :
APVh=-1.58± 0.12 ± 0.04 ppm
APVHe=6.40 ± 0.23 ± 0.12 ppm
GMs = 0.18 ± 0.27
GEs = -0.005 ± 0.019
Global fit:
GMs = 0.22 ± 0.20
GEs = -0.011 ±
0.016
<6% de p, <5% rs
(95% CL)
R.D.Young, et al, hep-ph/0704.2618
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
31
Results @ Q2=0.1 GeV/c2
16. Skyrme Model - N.W. Park and H.
Weigel, Nucl. Phys. A 451, 453
(1992).
17. Dispersion Relation - H.W. Hammer,
U.G. Meissner, D. Drechsel, Phys.
Lett. B 367, 323 (1996).
18. Dispersion Relation - H.-W. Hammer
and Ramsey-Musolf, Phys. Rev. C 60,
045204 (1999).
19. Chiral Quark Soliton Model - A.
Sliva et al., Phys. Rev. D 65, 014015
(2001).
20. Perturbative Chiral Quark Model V. Lyubovitskij et al., Phys. Rev. C 66,
055204 (2002).
21. Lattice - R. Lewis et al., Phys. Rev. D
67, 013003 (2003).
22. Lattice + charge symmetry Leinweber et al, Phys. Rev. Lett. 94,
212001 (2005) & hep-lat/0601025
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
32
Q2 Dependence
Proton
Data
• Small strange quarks contribution at low Q2
• G0 and PVA4 backward results to be released soon
• Happex-III likely to run in 2009
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
33
Projected G0 Results
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
34
Perspectives
PRex: APV in elastic e--208Pb scattering
(JLab Hall A)
Goal: Rn/Rn~1%
•Z0 couples mainly to neutrons:
--> new accurate measurement independent
of nuclear models, pins down sym. energy
--> Constraint on neutron stars structure
Lead
APV
 50015ppb
C.J. Horowitz, Phys. Rev. C 64, 062802 (2001)

Erice, Sept. 2007
D. Lhuillier - CEA Saclay
35

Perspectives
Test of the Standard Model at Low Energy
Combining global fit and extrapolation to
Q2=0 sets new limits on C1q and
constrains new physics at the TeV scale:
p
ApPV  A0 Qweak
Q2  BQ4 
Qweak @ JLab
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
ApPV (Q2  0.03GeV /c 2 )  230 5(stat ) ppb
--> Further improvement by a factor 5
PV-DIS @ JLab
•Constraint the C2q axial couplings
using isoscalar target
•New generation E122 exp. @ JLab
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
R.D.Young, et al,
hep-ph/0704.2618
36
Running of sin2w
sin  (Q) 
2
eff
W
 (0) sin 2 W (mZ ) MS
MollerJlab
Qweak
E158
LEP-SLC
(0)=1.03
sin2eff (E158) =
0.2397 ± 0.0013
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
37
Summary
•Tremendous progress in experimental techniques over
last 10 years
• Study of the strange nucleon form factors almost
completed. Stringent upper limits already set at low Q2.
•Weak neutral current at low energy established as a
new probe of the nucleon … and the weak interaction
itself.
•Perspectives at the crossing of nuclear, particle and
astro physics with PRex and test of SM at low energy.
Erice, Sept. 2007
D. Lhuillier - CEA Saclay
38