Axioms of Choice (Preference Ordering)

Download Report

Transcript Axioms of Choice (Preference Ordering)

ECON6021 Microeconomic
Analysis
Consumption Theory II
Topics covered
1.
2.
3.
4.
Price Change
Price Elasticities
Income Elasticities
Market Demand
Price effect
y
I
Py
Price consumption curve (PCC)
Or Price expansion path (PEP)
B
A
I
Px
Px
A
I
P'x
x
Ordinary (Marshallian)
Demand function
B
x  x(Px , Py , I )
x
Price Effects
Y
I
Py
I T
Py
J K
MB
A
S
Q
x0 xsx1
I
Px
I T
Px
I
Px'
X
• Initial consumption: A
• Price decreases from Px to
Px’
• Real income—Hick’s
definition: an initial level
of utility
• x0 to xs (or A to S) is the
sub. effect
• xs to x1 (or S to B) is the
income effect
Price Effects
• Price Effects= substitution effect
+ Income effect
• Substitution Effect a.k.a (also known as)
pure price effect: a change in relative price
while keeping utility constant
For income effects, S is the reference point.
M: no income effect
M-Q: X is normal
J-M: X is inferior
 X


0


 I

 X

 0

 I

 X

 0

 I

A is the reference point for the analysis
of combined effect of income and
substitution effect.
K-Q:
 X


 0 
 Px

J-K: Giffen gd.
 X


 0 
 Px

Giffen gd  inferior gd.
Price Elasticities
Price and Expenditure Elasticities
Own Price Elasticity
x Px
dx / x
exx 

Px x dPx / Px
exx  1
Elastic demand
exx  1
Unitary demand
exx  1
Inelastic demand
Price Elasticity of Expenditure
e( px x ), px
 ( Px x ) Px

Px Px x
 ( Px x ) 1

Px x
1  Px
x 
 
x  Px
x  Px
Px 
x Px
 1
 1  exx  1  exx
Px x
e( px x ), px
exx
(  1  exx )
Px 
Px 
>1
Elastic
0
Px x 
Px x 
<1
Inelastic
0
Px x 
Px x 
=1
Unitary
0
No
change
No change
An Example: Linear demand
p  A  Bx
A P
x 
B B
dx
1

dP
B
dx P
1 A  Bx
A

 1
dP x
B x
Bx
  if
A 
exx  1 
  1 if
Bx 
 0 if
x0
x  A / 2B
x  A/ B
An Example: Linear Demand
xP  Ax  Bx
d ( xP)
MR 
 A  2 Bx
dx
2
P
Review: Linear Demand
Q  100  P
or P  100  Q
ex ,Px 
ex , Px
(demand)
(inverse demand)
ex , Px  1
Q P
P
P
 ( 1) 
P Q
Q 100  P

P


 1
100  P 
 0
when P  100
Q
when P  50
when P  0
ex , Px decreases from  to 0 as P decreases from 100 to 0.
TR
TR  Q * P  (100-Q )*Q  -[Q  100Q ]  (Q  50) 2  2500
dTR
 100  2Q  0 when Q  50.
dQ
TR reaches a max when ex ,Px  1
Q
Income Change
AOG
AOG
IEP (Income Expansion
Path)
IEP
X
X
x is normal
x
 0 (meaning that Px , Py fixed)
I
where x(Px , Py , I )
x has no income effect
x
0
I
Px
fixed
variable
x( Px , Py , I )
Demand
IEP
x
variable
x
x is inferior
x
0
I
x( Px , Py , I )
Engel Curve
fixed
I
Income Elasticities
Income Elasticity
x I x / x
exI 

I x I / I
exI  1
superior good (luxury)
0  exI  1
normal, necessity
exI  0
no income effect
exI  0
inferior good
e( px x ), I
e Px x 

 I
, I

Px x
expenditure on x
Px x
sx 
I
budget share for x
 ( Px x ) I
x I

 Px
 ex , I
I
Px x
I Px x
  Px x / I 
x / I  I2
I

 Px
I
Px x / I
I
Px x
2
 I  x / I  x  I / I  I
 x   I 


  1
2

I

 x
 I   x 
 exI  1
eS x , I
 0

 exI  1 0
 0

if exI>1
if exI=1
If exI<1
Engel Aggregation (Adding-up
condition)
I  Px x  Py y
dI  Px dx  Py dy
dx
dy
1  Px
 Py
dI
dI
dx  x   I 
dy  y   I 
 Px      Py    
dI  x   I 
dI  y   I 
Px x dx I Py y dy I


I dI x
I dI y
 sx exI  s y e yI
Aggregate Income elasticity=1
Consider an income change…
Y
X
A
A-B
B
B-C
C
C-D
D
D-E
B
C
D
C’
I1
I0
E
X
Inferior
No income eff
Normal only
Normal only
Superior
Superior
Superior
Y
superior
superior
superior
normal only
normal only
no income effect
inferior
From C'  C
budget share of x does not change,
eSx I  0  exI  1  0  exI  1
Cobb-Douglas Utility: U=xy
max U  xy
x, y
subject to Px x  Py y  I
 x
I
I
,y
.
2 Px
2 Py
ex , Px 
x Px
 I Px
 I Px


 1
2
Px x
2 Px x
Px I
ex , Py 
x Py
0
Py I
x I
 1.
I x
 ex , I  1  0.    Check
ex , I 
eS x , I
Px x
I /2
1


I
I
2
S x I

 0.
I S x
Sx 
eS x , I
Homogenous function
• Homogenous function of degree k
– If there exists a constant k so that for all m>0 and for all
a, b
F (ma, mb)  m F (a, b) (1)
k
Then, we say F(.) is homogenous of degree k.
Euler Theorem
• Euler Theorem
– If F(a,b) is homogenous of degree k, then we have
F
F
a
b  kF
a
b
• Proof of Euler Theorem.
• Differentiate equation (1) with respect to m & then set
m=1
Corollary of Euler Theorem
Since demand x=F ( Px , P y , I ) is homo. of degree 0,
F
F
F
Px 
Py 
I 0
Px
Py
I
F Px
F Py
F I


0
Px F
Py F
I F
exx  exy  exI  0
Lump Sum Principle
AOG
Init ialcondit ions: I 0 , Px , Py
I
Py
hence x0 , y0
an excise t ax (ad valorem)t on x is levied
I 0  ( Px  t ) x  Py y
A
y0
y1
y2
B
I 0  tx1  Px x1  Py y1
At B,
S
I0
Px
x1 x2 x0
x
Lump Sum Principle
Lump-sum tax: T dollars
so that T  tx1
I 0  T  Px x  Py y
Hence, Px x  Py y  Px x1  Py y
a value
Chosen dependent on IC
Note that the new consumption at (S) is in a higher IC. In order
to get a fixed amount of taxation, lump-sum tax is less harmless
to consumers/citizens.
Lump Sum Principle
AOG
I0
0
A
X
The amount of A is a free gift from government.
A sum of money equivalent to the value of gift is even better.
Market Demand
Market Demand
x  x(Px , Py , I )
Individual demand
Assume 2 agents (1 and 2)
I1
x1 
2 Px
I1
Px 
2 x1
inversedemand
I2
x2 
2 Px
I
Py 
2 x2
inversedemand
I1
I2
I1  I 2
x market  x1  x2 


2 Px 2 Px
2 Px
Market Demand
100 P
P  100 xA  xA  
0
100
P

12.5 
P  50  4 xB  xB  
4

 0
5
0
12.5
100 112.5
if P  100
o.w.
if p  50
o.w.
if P  50
112.5  5P / 4

x  x A  xB   100  P
if 50  P  100

0
o.w.

The End