Transcript Document
The Role of the Clinical Investigator in Discovering how the Brain Controls Reproduction? Evidence from Genetic Approaches in the Human William F. Crowley, Jr., M.D. Professor of Medicine, Harvard Medical School Director, Harvard Reproductive Endocrine Sciences Center Director of Clinical Research, Mass General Hospital The People Who Did the Work ! Others Female Team Genetics Team Jan Hall Jim Gusella Stephanie Seminara Corinne Welt Sue Slaughenhaupt Nelly Pitteloud Kathy Martin Larry Jameson James Acierno Judy Adams Cricket & John Seidman Yousef Bo-Abbas Yari Jimenez Eric Lander Astrid Meysing David Altshuler Jenna Sagourny Pat Sluss Paradigm Therapeutics Carl Pallais Sam Aparicio Stephen O’Rahilly William Colledge Sophia Messager Male Team Emmanouella Chatzidaki Frances Hayes Nellie Pitteloud U of Pittsburgh: Tony Plant Maria Yialamas U of Washington: Bob Steiner Andrew Dwyer Oregon Primate Center: Sergio Ojeda Today’s Goals • Use human disease model to address fundamental problem • Idiopathic hypogonadotropic hypogonadism & Kallmann’s Syndrome • Genotype/phenotypes of 2 new genes that control GnRH • We propose to be “gatekeepers” of GnRH secretion, sexual maturation, & puberty • Put them in some context • Biology, Development, Evolution & Opportunities ???? Hypothalamus GnRH Pituitary FSH LH + T/E2 Inhibin B Leydig cells T/E2 Testes + + Sperm Why Study the GnRH Neuronal System? GnRH is Central, Critical, & Highly Conserved in Reproduction ‘Pilot Light’ of mammalian reproduction • • • • • Initiates all reproductive activity ‘On’ During neonatal and pubertal periods ‘Off’ during the childhood period or anestrus Initiates puberty/sexual maturation Rest of system - passively regulated “The Boss” Key Evolutionary Role Links external environment and internal endocrine milieu Synchronizes nutrition, light/dark cycles, stress, olfaction, & predators & reproduction Key to evolutionary success (‘fitness’) Genetic Control is Highly Species Specific E.g. Alpha adrenergic modulation of GnRH Links Between Reproduction & Environment: Role of Predators, Nutrition & Genes for Selection Neuroendocrine Activity (GnRH,LH,FSH,FAS) Neuroendocrine Activity of the Reproductive Axis Across Life in Humans GnRH +mRNA GnRH +Immunostaining ? Controlling Genes Neonatal Years Childhood Puberty Rule #1 - Start with a Patient with a Disease: = Important Biologic Problem History (1943) • good general health • small genitals; absence of puberty • absent sense of smell Exam • short stature • arm span > height • no axillary or pubic hair • microphallus • small L testis; no R testis palpable Rule #2 – Measure Something! - First Classification of Gonadal Function - PITUITARY LH FSH LH FSH LH FSH GONADS Gonadotropins Normal Gonadal Fxn Normal Hyper 1o Failure Hypo 2o Failure Hypogonadotropic Hypogonadism ? Hypothalamic GnRH Deficiency An Opportunity for Therapy based on Physiology Normal GnRH Deficient HYPOTHALAMUS GnRH Pulsatile GnRH Rx PITUITARY LH GONADS FSH LH FSH 50 LH (IU/L) T = 500ng% Normal Adult Male 40 Pulsatile GnRH Rx: Re-Constitutes Normal Normal Adult Male Range HPG Axis in IHH (Crowley et al, JCEM, 1980, 30 20 10 Hoffman et, NEJM, 1980) 0 0 240 480 720 960 1200 1440 LH (IU/L) 50 40 IHH Male: Baseline T = 20ng% 30 Normal Adult Male Range 20 10 0 0 240 480 720 960 1200 1440 (LH (IU/L) GnRH IV q 2hr 80 T = 500ng% 60 40 + Generates Opportunity for Dose-Response Curves (Spratt et al, JCEM) 20 0 0 120 240 360 480 TIME (minutes) 600 720 Infant Male with Terminal Deletion at Xp22.31 Karyotypic Abnormality Mother 46XX shared terminal deletion Xp22.31 • Dysmorphic features • Cryptorchism & microphallus • Low LH, FSH, & T levels • Absent olfactory bulbs/tracks • Icthyiosis & Calcium Disorder Son 46XY Bick et al. Am J Med Gen 1989 Localization of the KAL Gene on Xp 21.3 splice frameshift nonsense missense deletion * 1 2 3 Novel Mutation 4 5 C172R Anosmin His-rich 7 6 * * * 8 9 10 11 R191X 181 WAP R457 X 285 FN III 402 FN III 12 13 14 1951delC 540 680 H FN III FN III *MGH (Georgopoulos 1997) Migration of GnRH Neurons in Mouse Brain vno gt ob poa vomeronasal organ ganglion terminale olfactory bulb preoptic area Schwanzel-Fukuda & Pfaff, Nature 1989 Olfactory bulb Embryology of GnRH Olfactory Neuronal Migration Tract • Olfactory neurons send processes hypothalamus NORMAL Cribriform • GnRH neurons migrate Plate along olfactory tract Olfactory Placode • Anosmin in extracellular matrix • Kallmann’s Syndrome olfactory bulb & tract absent in Kallmann’s pts anosmia KALLMANN’S • Migration defect in KAL-1 deletion/mutation GnRH deficiency Genotype-phenotype: Males with Confirmed KAL mutations Inherit TV Crypt Micro LH pulse Other Cys172Arg 3 Brothers 1-2 mL - - No Arg 191X 1 sporadic 1-2 mL 1 sporadic 1-2 mL 1 2 + Tyr328X X-linked 1-2 mL - - No 11 base del X-linked 1-2 mL 2 - No 14 base del Sporadic 1-2 ml - - No Arg457X X-linked 4.5 mL* 1 - No Del. Sporadic 1-2 mL 1 + No Synkinesia No Hi-Arched palate color blindness color blindness Renal agen. Oliviera et al: JCEM 2002 The Genetics of GnRH Deficiency: Role of the Autosome GnRH Deficiency Anosmia Delayed Puberty Fam. History 5 Autosmal Dom. Autosmal Rec. X-Linked IHH/KS alone 32% 47% 21% +/-anosmia 50% 32% 18% +/- DP 64% 25% 11% Waldstreicher et al, JCEM 1996 Mutations in FGFR1 Gene (8p11.2) cause Kallmann’s Syndrome • Hardelin et al, Nature Genetics, 2003 • • • • • 2 Patients with deletions of 8p11.2 & 12 region (GnRH) 1 with hereditary spherocytosis (ANK1) + KS Multiple congential anomalies (shortened 5th finger, micrognathia) 12% incidence of heterozygous mutations in FGFR1 in 129 KS (91M/28F) Autosomal Dominant • Dode et al, Nature Genetics, 2003 • 9% incidence of FGFR1 coding sequence mutations in KS patients (12/129) • High frequency of cleft lip/palate • Asymptomatic carriers (female) • Sato et al, JCEM, 2004 • 2 heterozygous mutations of FGFR1 in KS patients • 11% incidence • No Reproductive Phenotypes!!! FGFR1 Mutations: Genotype-Phenotype Correlations A. # 1,3,4,9 Absent Puberty T = 45 ng/dL 10 5 0 0 Glu274Gly Leu340Ser 4 # 12 B. Tyr339Cys 2 6 8 10 12 hr Partial Puberty E2<20 pg/mL Gln680X 10 IgI IgII IgIII Arg250Gln TK TK 5 0 Arg622X 0 2 4 #10 6 8 10 12 hr Reversal of KS T = 368 ng/dL C. 10 5 0 0 2 4 6 8 10 12 hr Genotype-phenotype - FGFR1 mutations (MGH Pitteloud, unpublished) Sex FH TV Crypt. Micro. LH Ansomia Other Gly696Ser M - 8 mL - N U + Tyr337Cys M - 3 mL - N U + Arg620X M + 10mL(S+) - N Reversal + Ser344Cys M + 4 mL - N LH3.5/FSH6 + Arg252Glyn M - No puberty - N ? + Gly235Ser M + 2 ml* Bilat Y U + Glu272Gly M + 2 mL Bilat Y U + Val271Met M + 2 mL - Y U + Gly678X M + 1 ml - N U Gly701Ser M - 3 mL* Uni Y U+ L>S (exon8) M - 1mL Bilat N U F + Partial pub. ? RforQ (ex7) Y cleft palate Normal cleft palate + Hypo. Hirschspr. cleft palate cleft palate FGFR1 Mutation and normosmic IHH IHH Anosmia colorblind Clues/Lessons re FGFR1 Mutations: 1. AD that Mimics X-linked (? Females) 2. Causes not just KS but IHH s anosmia 3. Confirms cleft palate = part of spectrum Gln678X Gln678X 19 yr 28yr IHH (TV 1mL) IHH (TV 1mL) Cleft palate Missing teeth Color blindness R/G Gln678X 19yr IHH? GHD? FGFR1 Families IHH Pedigree 2 Pedigree 1 12 Delayed Puberty Anosmia 11 Menarche 15 6 7 10 Clues re9FGFR1 Mutations:Arg620X Menarche 16 1. Reproductive Glu272Glyphenotype quite variable 8 3 2 2. Cause delayed puberty = first gene Arg620X r 3. Females are attenuated to no phenotype 4 1 5 Glu272Gly 4. ? Why are males more severely affected Arg620X Evidence from the Fgfr1 Knock-out Mouse: FGFR1 and KAL1 Genes • both expressed in the Olfactory Bulb during development FGFR1 Knock-out • Telencephalon does not develop normally • Interfers with Olfactory Bulb development Herbert Development 2003 FGF, FGFR, and HS are required for receptor dimerization (Bernfield, 1994) Anos. Anos. FGFR1/HS binding domain in the Ig II domain Anos. Anos. Pellegrini 2001 Biology of FGFR1 KAL-1 & FGFR1 co-expressed developmentally Brain & kidney Conditional K/O of FGFR1 in the telencephalon No olfactory bulb; no pathway for GnRH neurons FGFR1-FGF2 interaction with HS Role for co-receptor (e.g. TGF beta family) Hypothesis: Kallmann’s Syndrome Due to FGFR1 Mutations is a Digenic Disorder? 1. KAL1/Ansomin binds HSPG “Syndecans” • Anosmin = ligand or co-receptor for FGFR1 (vs FGF2) 2. KAL1 = Non-Lyonized X gene • i.e. Females have 2 copies; Males only 1 3. ? FGFR1 Defects Digenic in nature • Females have 2 copies; males only 1 ligand • i.e. males are ‘haploinsufficient’ for anosmin • Therefore males get the more severe phenotypes IHH I:1 II:1 I:2 II:2 II:3 II:4 Anosmia 6 III:1 III:2 III:3 III:4 S/L S/L S/L 3 III:5 III:6 III:7 S/L S/L S/L 3 IV:9 IV:10 IV:11 IV:12 L/L S/S L/S IV:1 IV:2 IV:3 L/L S/S L/S IV:4 S/S IV:13 III:8 IV:14 IV:15 IV:16 L/L L/L S/S S/L IV:5 IV:6 IV:7 S/S S/S S/L IV:8 L/L IV:17 Chromosome 19 rs7815 rs731804 rs668447 rs10390 REU-1902 rs1006473 rs1006474 rs1006475 rs757331 REU-1903 rs736926 D19S886 REU-1905 Seminara et al, JCEM, June, 2003 GPR54 Protein Phosphorylation Gq/11 GTP PIP2 DAG Phospholipase C IP3 Ca 2+ release • GPCR • Rhodopsin-like • Galanin & SomatoStatin Receptors (~35-38%) Cognition Nociception Feeding/Nutrition Reproduction Genomic Screening of GPR54 Pro WT Leu Arg Pro L148S Ser Arg 443T>C [L148S] •Segregates properly •Absent in control pops. •Highly conserved • Nonpolar to polar Human GPR54 Mouse Gpr54 Rat Gpr54 SVDRWYVTVFPLRALHRRTPRL SVDRWYVTVFPLRALHRRTPRL SVDRWYVTVFPLRALHRRTPRL Human Human Human Human Human Human Human Human SVDRYVAIVHSRRSSSLRVSRN Galanin Family SVDRYLAIRYPLHSRELRTPRN SVDRYLAVRHPLRSRALRTPRN SVDRYVAVVHPIKAARYRRPTV SIDRYLAVVHPIKSAKWRRPRT Somatostatin Family SVDRYLAVVHPTRSARWRTAPV SVDRYVAVVHPLRAATYRRPSV SVDRYLAVVHPLSSARWRRPRV GALR1 GALR2 GALR3 SSTR1 SSTR2 SSTR3 SSTR4 SSTR5 50 LH (IU/L) T = 500ng% Normal Adult Male 40 GPR54 Patient: Baseline Studies 30 Normal Adult Male Range 20 10 0 0 240 480 720 960 1200 1440 LH (IU/L) 50 40 GnRH Deficient Male: Baseline T = 20ng% Normal Adult Male Range 30 20 10 0 0 240 480 720 960 1200 1440 10 IHH Patient: +GPR54 Mutations 8 + Low Amplitude LH Pulses 6 4 2 0 0 240 480 720 TIME (minutes) 960 1200 1440 25 ng/kg 75ng/kg 2.5 ng/kg 250ng/kg LH (IU/L) 60 Dose Response Studies 40 20 0 0 TIME (hr) 2 6 8 LH Amplitude 60 40 20 0 0 1 2 3 0 1 2 3 LH Amplitude 60 40 20 + Left Shifted Dose Response Curve Compared To 6 IHH Men Without GPR54 Mutations 0 LOG (10) GnRH Seminara SB et al, NEJM, 2003 -/-/-/- +/+ +/+ B +/+ +/+ -/- -/- GPR54 -/Paradigm Therapetuics “Harry Potter” -/- Genotype 0.4 0.3 0.2 0.1 0 50 20 0 Genotype/Treatment 20 10 0 Genot ype 0 Genotype/cycle stage f) 8 P <0.01 Genotype/Treatment Gn -/RH e) 60 fem -/ale 100 70 P<0.01 + 0.5 100 + -/PB S 0.7 120 50 wi femld-t y ale pe 200 c) ma -/le P<0.01 80 wi ld ma -t yp le e 500 FSH ng/ml 600 P<0.05 w i + ld-t PB yp S e w + ildGn t y RH pe Genotype LH ng/ml 0 b) fe -/m ale 300 w pro ildest t yp r e w i us oe ld-t y str pe us w me ild toe -t yp st e w rus dio ilde st t yp rus e no n-c -/yc lin g 6 w i fe ld-t m yp ale e 400 Oestradiol pg/m l P<0.05 m /al e 0 Gn -/RH 1 + 2 ild m -t y a l pe e 3 + -/PB S 4 wi + ld-t y PB p S e wi + ld-t Gn yp RH e 5 Pituitary LH ng/m g tissue g) w 0.6 GnRH pg/mg hypothalamus wi femld-t y ale pe ma le P<0.001 fe -/m ale w i fe ld-t m yp ale e -/- wi l ma d-t y le pe Testosterone pg/m l 7 m /al e ild m -t y a l pe e d) w LH ng/ml a) P<0.01 110 90 40 30 40 20 30 10 10 Genotype P <0.01 40 7 30 6 5 4 3 2 1 0 Phenotype of GPR54 -/- Mouse (“Harry Potter”) • Faithful Recapitulation of Human IHH • Normal to GnRH Levels in Hypothalamus - ? Means GPCR 54 maybe responsible for GnRH processing - ? Like prepubertal monkey and rat hypothalamus • If mutation IHH, Could Antagonists HH - ? Good candidate for small ligand screening If GPR54 is the Receptor, What is the ligand? Kisspeptin-1 /Metastin Structure of Metastin Kisspeptin-1 Signal Peptide 1 19 20 M G E Dibasic cleavage sites 67 68 RK RLSRR GTS Metastin 1 16 31 46 GTS 121 122 GLRF GKR GLRF NH2 GTSLSPPPESSGSRQ QPGLSAPHSRQIPAP QGAVLVQREKDLPNY NWNSFGLRF-NH2 15 30 45 54 145 Q KiSS-1 mRNA transcripts in neurons of arcuate nucleus in the rodent (Steiner Lab) GPR54 & KiSS1 mRNA in overlapping cell populations of female monkeys (Ojeda & Plant) GPR54 Expression in Female and Agonadal Male Monkeys Across the Pubertal Transition Expression of GPR54 does not increase in the agonadal male monkey KISS1 Expression in Female and Agonadal Male Monkeys Across the Pubertal Transition Expression of KISS1 increases in both animal models Central Administration of Metastin in Juvenile Orchidectomized Monkeys Vehicle 30 ug Metastin 100 ug Metastin Metastin Plasma LH (ng/ml) 16.0 Acyl+100 ug Metastin 12.0 8.0 4.0 0.0 -30 0 30 60 90 120 Time (min) 150 180 210 240 Metastin ellicits a brisk LH response in juvenile, agonadal male monkeys Physiology of Metastin/Kisspeptin • GPR54 is on nearly all GnRH neurons + median eminence • Metastin & GPR 54 mRNA across sexual maturation in monkey, rat, and mouse • (Ojeda, Plant, Steiner, Manuel-Tempore) • This appears to be regulated by sex steroids • Kisspeptin neurons overlay GPR54 & GnRH neurons • Steiner; Ojeda • Metastin administration induces c-fos in GnRH neurons • Metastin administration induces LH pulses • (rat, mice & monkey) • Metastin administration ‘trumphs’ leptin def. IHH Due to Possible Metastin Mutation? • IHH male with homozygous duplication at 5’ end of metastin gene (Paris [Deroux] + Boston collaboration [Seminara + Crowley] • No mRNA present in peripheral lymphocytes • Some normal controls + for heterozygous changes • Being evaluated GPR 54 & Metstatin: ? Site of Action within the Hypothalamus GnRH HypophysealPortal Blood Supply (GnRH,LH,FSH,FAS) Neuroendocrine Activity Role of GPR54 & Metastin in IHH IHH (GPR54/Metastain) Neonatal Childhood Years Puberty Hypothalamic Amenorrhea (+ stress) (- stress) (GnRH,LH,FSH,FAS) Neuroendocrine Activity ? Role of Metastin/GPR54 in Hypothalamic Amenorrhea? Neonatal Childhood Years Puberty Adult-Onset IHH (- stress) (GnRH,LH,FSH,FAS) Neuroendocrine Activity ? Role of Metastin/GPR54 in Adult Onset IHH Neonatal Childhood Years Puberty (GnRH,LH,FSH,FAS) Neuroendocrine Activity ? Role of Metastin/GPR54 in Disorders of Pubertal Timing? ? Precocious Puberty/ Constitutional Delay Neonatal Childhood Years Puberty Human Disease Model: Idiopathic Hypogonadotropic Hypogonadism -Anosmia + Anosmia ? Developmental Pathways -? Regulatory GnRH Kallmann’s Syndrome KAL1 (X) FGFR1 (AD) ? FGF 2 ? Others Normosmic IHH GPR 54 ? Kisspeptin FGFR1 ? Others Karotypic Abnormality Contiguous Gene Syndrome Linkage X-p22.1 KAL1 8p11.2 FGFR1 19q13.3 GPR54 LEPR 1p31.2 PIT1 3p11.2 2003 Human Genome Assembly GnRNR 4q13.2 1 13 2 14 3 15 FGFR1 8p12 ? GnRH1 8p 12.2 Common Features All Monogenic LEP 4All Prismatic 67q32.1 7 8 10 5 9 PROP1 GPR54 5q35.3 KAL1 None19p13.3 are PolygenicXp22.31 11 19 X 16 17 18 20 21 22 12 DAX1 Xp21.2 Y Trends in Bedside to Bench Bedside 1930-60s 1960-00s 2000+ Bench Universities, AHCs, & Professional Societies Thoughtful Clinicians Clinical Investigators Basic Investigators Lessons for the Clinical Investigator in the Post-Genomic Era 1. Take full advantage of UBOs • patients or families (espeically those with contiguous gene syndromes or chromosomal translocations) afford Unique Biologic Opportunities to locate and identify new genes Spiral Staircase To Success Lessons for the Clinical Investigator in the Post-Genomic Era 1. Take full advantage of UBOs 2. Partnerships with basic investigators are key for translational investigators to establish & are mutually beneficial • basic research collaborations will be increasingly bi-directional in the future • human mutations provide critical information re: structure-activity relationships • accurate, detailed, & quantitative phenotyping will be key to identifying new genes & their biology Spiral Staircase To Success Lessons for the Clinical Investigator in the Post-Genomic Era 1. Take full advantage of UBOs 2. Partnerships key & mutually beneficial 3. Strap on the new tool belt • Human Genome Project provides expanding collection of new tools Spiral Staircase To Success Lessons for the Clinical Investigator in the Post-Genomic Era 1. Take full advantage of UBOs 2. Partnerships key & mutually beneficial 3. Strap on the new tool belt Spiral 4. Access to the DNA is THE rate-limiting Staircase To step! Success • samples from patients & relatives are a key resource: • phenotyping of proband • complete family histories • relational databases GPR 54 & Metstatin: ? Site of Action within the Hypothalamus ? ? ? ? ? ?