Transcript HW 2 Helper

HALE UAV Preliminary Design
SAURON
AERSP 402B
Spring 2014
Team: NSFW
Nisherag Gandhi
Thomas Gempp
Doug Rohrbaugh
Gregory Snyder
Steve Stanek
Victor Thomas
Mission Statement
To design a High Altitude / Long Endurance
(HALE) UAV using alternative fuel sources
to support homeland security efforts with a
concentration in long term border security.
Design Changes
v1
v4
v2
v5
v3
v6
Sauron v7
Design Changes – Wing and Tail
Design Changes – Landing Gear
Dimensions
Parameter
Wing
Tail
Airfoil
SM701
Jouk0015
Span (ft.)
128.6
18.0
Reference Chord (ft.)
4.0
2.5
Area (ft.2)
557.5
45.0
Cruise CL
0.66
0.09
Span Efficiency
1.01
Max CL
1.4
Power Generated (kW)
16.93
Aspect Ratio
29.6
Neutral Point Location (ft.)
13.4
C.G. Location (ft.)
13.2
Wing/Tail Lift Distribution
Structures – Materials
•
•
•
•
•
•
•
HexPly M91 - Epoxy Matrix for
primary aerospace structure
High residual compression
strength after impact (CAI)
Supports automated
manufacturing
HexTow IM10 - Carbon Fiber 12k
tow
Suitable for weaving, prepregging, filament winding,
braiding, and pultrusion
Enhanced tensile properties
Highest commercially available
tensile strength
* Avg. cost: $45/lb.
M91/IM10
Structures – Materials
HexTow IM10 Carbon Fiber
# of Filaments
12000
Filament Diameter (microns)
4.4
Tensile Strength (MPa)
6964
Tensile Modulus (GPa)
310
Strain (%)
2.0
Density (g/cm3)
1.79
Epoxy-Fiber (Prepreg) Combination (M91/IM10)
Theoretical Values
Cured Ply Thickness (in)
~ 0.0072
Fiber Volume (%)
~ 58.9
Laminate Density (g/cm3)
~ 1.4
Laminate Modulus (GPa)
~ 200
Tensile Strength (MPa)
~ 3620
Wing – Spar Design
Wing – Weight and Lift Distribution
Wing – Moment and Stress
Wing – Deflection
Wing Deflection Analysis
H &V Stabilizer Spar Design
Horizontal Stabilizer – Lift Distribution
H. Stabilizer – Moment and Stress
H. Stabilizer – Wing Deflection
Vertical Stabilizer –
Weight and Lift Distribution
V. Stabilizer – Moment and Stress
V. Stabilizer - Deflection
Weight Breakdown
Aircraft Part
Empty Weight (lbs)
Parameter
Empty Weight (lbs)
Wing
126.89
Total Empty Weight
404.44
Fuselage
32.77
Battery
180.00
Horizontal Stabilizer
10.24
Vertical Stabilizer
3.98
Payload
250.00
Solar Cell
87.53
Total
834.44
Wing Spar
70.38
Vertical Stab Spar
0.71
Horizontal Stab Spar
1.87
4 Motors
16.00
Fuselage Formers
15.00
Gear System
40.00
Total Empty Weight
404.44
Control Surfaces
Aileron
Control Surface Area: 3%
Pcruise|61k ft = 13.8 deg/sec
Pstall|61k ft= 11.5 deg/sec
Required Aileron Deflection =10°
Elevator
Control Surface Area: 46.7%
Pitch Rate= 9 deg/sec
Required Elevator Deflection= -2.6°
Lift Coefficient, CL
Elevator Deflection (°)
0.1
1.55
0.4
0.90
0.66
0.25
1.0
-0.74
1.4
-2.14
Rudder
Control Surface Area:
42.9%
Rudder Deflection: 20°
Maximum Sidewash:
10°
Max Crosswind: 12.5
ft/s
Control Surface Demo
Airfoil Selection
Wing Airfoil
H&V Stabilizer Airfoil
Updated Drag Analysis
Updated Drag Analysis
Sea Level
45,000 feet
61,000 feet
79,000 feet
Stall Speed (ft/s)
37.0
83.9
122.3
188.7
Cruise Speed (ft/s)
44.4
100.7
146.8
226.5
Max Speed (ft/s)
113.0
191.5
245.3
294.0
Total Drag (lbs)
18.4
20.3
22.5
26.9
Power Required (kW)
1.05
2.7
4.3
8.1
1,129,663.40
626,856.80
429,692.6
274,504.6
0.0087
0.01
0.0105
0.0125
Oswald’s Efficiency
0.76
0.73
0.69
0.63
Max L/D
46.7
42.4
38.2
31.9
Reynolds’ Number
CDo
Updated Power Analysis
48 hour UAV Power Plan
16
Previous Power Calculation
Current Power Calculation
14
Power (Kilowatts)
12
10
8
6
4
2
0
0
5
10
15
20
25
Time (hours)
30
35
40
45
50
Takeoff
Parameter
Ground Roll [ft]
Vtakeoff [ft/s]
dab|35ft [ft]
dab|50ft [ft]
Dtotal|35ft [ft]
Dtotal|50ft [ft]
Thrust [lbs]
Sea Level
Denver
Afghanistan
Landing
Parameter
Va [ft/s]
γa [deg]
Radius [ft]
Flare Height [ft]
Flare Speed [ft/s]
da35ft [ft]
da50ft [ft]
df [ft]
VTD [ft/s]
Thrust [lbs]
Sea Level
Denver
Afghanistan
Constraint Diagram
Original
Current
Cost Analysis
Fixed Costs for 5 Developmental Aircraft:
– Engineering Costs: $29,869,717.35
– Flight Test Ops: $17,638,487.67
– Tooling: $4,567,827.99
Pricing
Pricing Summary
1
10
100
Design Aircraft
500
1000
5
Engineering Costs
$ 29,869,717.35
Flight Test Ops
$ 17,638,487.67
Tooling Costs
$
Manufacturing Costs
$
3,411,149.77
Quality Control Costs
$
Total Materials Costs
4,567,827.99
$ 14,924,534.27
$
65,298,136.52
$ 183,206,365.99
$ 285,693,781.52
490,688.06
$
2,146,868.71
$
9,393,025.19
$
26,353,922.21
$
$
889,569.58
$
2,223,923.96
$
15,567,467.69
$
74,872,106.51
$ 149,002,905.04
Design Materials Costs
$
741,307.99
$
741,307.99
$
741,307.99
$
741,307.99
Production Materials Costs
$
148,261.60
$
1,482,615.97
$
14,826,159.71
$
74,130,798.53
$ 148,261,597.05
$
41,096,561.54
741,307.99
Total Frame Costs
$ 60,725,386.10
$ 75,229,305.63
$ 146,192,608.09
$ 340,366,373.41
$ 531,727,226.80
Minimum Price Per UAV
$ 60,725,386.10
$
$
$
$
7,522,930.56
1,461,926.08
680,732.75
* +$2M per for custom sensory packages
531,727.23
Comparison to Competitors
• RQ-1/MQ-1 Predator
– Unit Cost: $4.03M
– 360 Built
• MQ-9 Reaper
– Unit Cost: $16.9M
– 104 Built
• RQ-4 Global Hawk
– Unit Cost: $131.4M
– 42 Built
• Solara 50/60
– Unit Cost: $1-2M
– N/A Built
14 Days ‘Til Graduation
Questions?
Double Camera
Summary
Value
Parameter
Aspect Ratio
Empty Weight Ratio
Battery Weight Ratio
Battery Charge Density
(watt-hr./kg)
Solar Cell Efficiency
L/D
2
Wing Loading (lbs./ft. )
Takeoff Weight
Payload (lbs.)
2
Wing Area (ft. )
Proj. Wing Span (ft.)
Ref. Chord Length (ft.)
Oswald’s Efficiency
Thrust to Weight Ratio
Parameter
Stall Speed
(ft./sec)
Cruise Speed
(ft./sec)
Total Drag
(lbs.)
Max L/D
Power Required
to Cruise (kw)
CL at Cruise
Reynolds’s
Number
at Cruise
Sea Level 45,000 ft. 61,000 ft.