μ FM Transceiver

Download Report

Transcript μ FM Transceiver

𝜇 FM Transceiver
By
Sewvanda Hewa Thumbellage Don,
Meshegna Shumye, Owen Paxton, Mackenzie Cook,
Jonathon Lee, Mohamed Khelifi, Rami Albustami,
Samantha Trifoli
1
2
Motivations
3
Applications
•
•
•
•
•
•
Radios
Walkie-Talkies
Spy Equipment
Without the
Phone!!!
Security and Alarm Systems
Carleton Class room Microphones
Heart Rate monitors and Medical Applications
4
Block Diagram
LNA
Feedback
Loop
Channel
Select Filter
Mixer
Channel Select Voltage
Control
Oscillators
Bandpass
Filter
PA
Phase Locked
loop FM
demodulator
Audio
Amp
Frequency
Synthesis
FM
modulator
5
1.3mm
3mm
6
Transistor Modelling
and The Carleton University
Fabrication Process
Samantha Trifoli
[email protected]
7
Transistor Modelling
5µm Length Transistor with Original Parameter Values
VG=5V
VG=4V
VG=3V
VG=2V
VG=0V
Extracted data
Originally Calculated Parameter fit data
VG=1V
8
Transistor Modelling
5µm Length Transistor with Parameter Fit Values
VG=5V
VG=4V
VG=3V
VG=2V
VG=0V
Extracted data
Parameter fit data
VG=1V
9
Transistor Modelling
2.5µm Length Transistor with Original Parameter Values
VG=5V
VG=4V
VG=3V
VG=2V
VG=1V
VG=0V
Extracted data
Originally Calculated Parameter fit data
10
Transistor Modelling
2.5µm Length Transistor with Parameter Fit Values
VG=5V
VG=4V
VG=3V
VG=2V
VG=1V
VG=0V
Extracted data
Parameter fit data
11
Minimum Transistor Length
• Minimum transistor length in the Carleton
Fabrication Lab is typically 5µm
• We pushed it to 2.5µm for higher speed in our
circuit
5µm
2.5µm
12
Metal Mask Reticle
13
Photoresist
• Machine used to spin on the photoresist in the
Carleton University Fabrication Lab
14
Process Variation
• Variations in the fabrication of our circuits
causes variation in substrate doping and
threshold voltage
15
Mixer
Sewvanda HT Don
[email protected]
16
Mixer Function
• Obtain a desired frequency using two given
signals (RF and LO)
RF Signal
100.2MHZ
f
Desired Frequency
Local Oscillator
17
Mixer Function
f1-f2f
f1
100 MHz
10 MHZ
f1+f2f
120 MHz
f2
110 MHZ
18
Challenges
• Getting the Required Gain
– No full size resistors
– Resistors made from MOSFETs
• Third Order Intermodulation Products
– Side effects of the mixing process
– Falls near the Output Frequency making detection
complex
19
Intermodulation Products
f1
2f1-f2
f2
2f2-f1
20
Schematic
Output
Resistors
Local
Oscillator
RF
Modulation
Current
Mirror
21
FM POWER AMPLIFIER
Channel Select Voltage
Control
Oscillators
Bandpass
Filter
PA
Frequency
Synthesis
FM
modulator
Rami Albustami
[email protected]
22
What is a Power Amplifier?
• Boosts the Output Power
• The final component just before the antenna
in a transmitter
23
Schematic
VDD
Large!
Vout
Vin
24
With Input Power = -20 dBm
6.5
6
Vout (dBm)
5.5
5
4.5
4
3.5
0
20
40
60
80
100
120
140
160
180
200
Frequency (MHz)
Gain ≈ 25.7 dB
25
1 dB Compression Point
Power Amplifiers trades-off efficiency & linearity
1 dB Compression Point (-9,16.8)
25.00
Vout (dBm)
15.00
Gain ≈ 25.7 dB
-55.00
-45.00
-35.00
5.00
-25.00
-15.00
-5.00
5.00
15.00
-5.00
-15.00
Pin (dBm)
-25.00
26
How far will the signal travel?
50 meters
Free Space
Path Loss ≈ 46.4 dB
FSPL(dB)
= 32.45
\ With Output Power ≈ 5.7 dBm
Power Received ≈ -40.7 dBm
27
PLL Frequency Synthesizer
Mixer
LNA
Feedback
Loop Channel
Select Filter
Phase Locked
loop FM
demodulator
Audio
Amp
Frequency
Synthesis
Bandpass
Filter
PA
FM
modulator
Owen Paxton
[email protected]
28
Frequency Synthesizer
Phase
Frequency
Detector
Charge
Pump
VCO
CLK
Divide By N
29
Programmable Divide By N
Challenges:
• Range 80MHz-110MHz
• Step Size 200KHz
• Divide by 400-550
Solution:
• Counter with
programmable reset
30
Phase Frequency Detector
• Consists of two flip flops and a NAND gate
D
CLK
Q
31
D Flip Flop Simulation
Voltage
(V)
Time
(us)
32
Charge Pump
33
Current Mirror Simulation
Current
(mA)
Input Voltage
(V)
34
35
References
[1] J.W.M. Rogers and C. Plett, Radio Frequency Integrated Circuit Design, 2nd
ed., Norwood, MA; Artech House, 2010.
[2] Adel Sedra and Kenneth Smith, Microelectronics Circuits, 6th ed., Oxford
University, 2010.
[3] Erik Dahlman, 3G Evolution, 2nd ed., Burlington, Ma; 2008.
[4] Steve C. Cripps, RF Power Amplifiers for Wireless Communication,
Norwood, MA; Artech House, 1999.
36
Q&A
37