Transcript Document
Guided By: Prof. Naveen Sharma Two Port Networks Generalities: The standard configuration of a two port: I1 + V_1 Input Port I2 The Network Output + V_2 Port Two Port Networks Network Equations: Impedance Z parameters V1 = z11I1 + z12I2 Admittance Y parameters I1 = y11V1 + y12V2 V2 = z21I1 + z22I2 I2 = y21V1 + y22V2 Two Port Networks Z parameters: V z 1 11 I 1 I 0 2 z11 is the impedance seen looking into port 1 when port 2 is open. I 0 1 z12 is a transfer impedance. It is the ratio of the voltage at port 1 to the current at port 2 when port 1 is open. V z 2 21 I 1 I 0 2 z21 is a transfer impedance. It is the ratio of the voltage at port 2 to the current at port 1 when port 2 is open. V 2 22 I 2 I 0 1 V z 1 12 I 2 z z22 is the impedance seen looking into port 2 when port 1 is open. Two Port Networks Y parameters: I y 1 11 V 1 V 0 2 y11 is the admittance seen looking into port 1 when port 2 is shorted. V 0 1 y12 is a transfer admittance. It is the ratio of the current at port 1 to the voltage at port 2 when port 1 is shorted. I y 2 21 V 1 V 0 2 y21 is a transfer impedance. It is the ratio of the current at port 2 to the voltage at port 1 when port 2 is shorted. I y 2 22 V 2 V 0 1 I y 1 12 V 2 y22 is the admittance seen looking into port 2 when port 1 is shorted. Two Port Networks Z parameters: Example 1 Given the following circuit. Determine the Z parameters. I1 8 I2 10 + V1 _ + 20 20 V2 _ Find the Z parameters for the above network. Two Port Networks Z parameters: Example 1 (cont 1) For z11: For z22: Z11 = 8 + 20||30 = 20 Z22 = 20||30 = 12 I1 For z12: 8 + V1 V z 1 12 I 2 I2 10 I 0 1 20xI 2 x 20 V1 8 xI 2 20 30 + 20 20 V2 _ _ Therefore: z12 8 xI 2 8 I2 = z 21 Two Port Networks Z parameters: Example 2 (problem 18.7 Alexander & Sadiku) You are given the following circuit. Find the Z parameters. I1 I2 4 1 + V1 _ + 1 + Vx - 2 V2 2Vx _ Two Port Networks Z parameters: Example 1 (cont 2) The Z parameter equations can be expressed in matrix form as follows. V1 z11 V z 2 21 z12 I 1 z 22 I 2 V1 20 8 I 1 V 8 12 I 2 2 Two Port Networks Z parameters: V z 1 11 I 1 Example 2 (continue p2) I1 I 0 2 + V V 2V x 6V x V x 2V x I1 x x 1 6 6 3V x I1 2 ; V1 + 1 + Vx - 2 V2 2Vx _ but Vx V1 I 1 Other Answers Z21 = -0.667 Substituting gives; 3V1 I 1 I1 2 I2 4 1 V1 5 z11 or I1 3 Z12 = 0.222 Z22 = 1.111 _ Two Port Networks Y Parameters and Beyond: Given the following network. I1 + V1 I2 1 + 1 s s _ V2 _ 1 (a) Find the Y parameters for the network. (b) From the Y parameters find the z parameters Two Port Networks Y Parameter Example I y 1 11 V 1 I1 = y11V1 + y12V2 I y 1 12 V 2 V 0 2 I2 = y21V1 + y22V2 I1 + V1 y I2 1 I 2 21 V 1 I y 2 22 V 2 V 0 2 + 1 s s _ V2 _ 1 short We use the above equations to evaluate the parameters from the network. To find y11 2 2 s V1 I 1 ( ) I1 21 s 2 s 1 so I y 1 11 V 1 V 0 2 = s + 0.5 V 0 1 V 0 1 Two Port Networks Y Parameter Example y I 2 21 V 1 V 0 2 I1 + V1 We see V1 2I 2 + 1 s s _ 1 I y 2 21 V 1 I2 1 = 0.5 S V2 _ Two Port Networks Y Parameter Example I1 To find y12 and y21 we reverse things and short V1 I y 1 12 V 2 + V1 short I2 1 + 1 s s _ 1 V 0 1 I y 2 22 V 2 We have V 0 1 We have V2 2I1 I y 1 12 V 2 = 0.5 S 2s V2 I 2 ( s 2) 1 y22 0.5 s V2 _ Two Port Networks Y Parameter Example Summary: Y = y11 y 21 y12 s 0.5 0.5 y22 0.5 0.5 1 s Now suppose you want the Z parameters for the same network. Two Port Networks Going From Y to Z Parameters For the Y parameters we have: For the Z parameters we have: V Z I I Y V From above; V Y 1 I Z I Therefore Z Y 1 z z 11 12 z z 21 22 y 22 Y y 21 Y y 12 Y y 11 Y where Y detY Two Port Parameter Conversions: Interconnection Of Two Port Networks Three ways that two ports are interconnected: ya Y parameters * Parallel yb y ya yb za zb * Series Z parameters z za zb