Transcript Document

IAC Workshop on Medical and Biological
Imaging with Novel X-Ray Beams
Pulsed Laser Undulators Excited by Compact Storage
Rings: A Candidate Technology for Single-shot Medical
Imaging
Roman Tatchyn*
Stanford Synchrotron Radiation Laboratory
Stanford, CA 94305
*Talk based on work and contributions of numerous investigators at SSRL, University
of Oregon, BPI, BNL, DESY, KEK, ESRF, KIPT, and elsewhere
August 8, 2003
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
1
1.TERMINOLOGY: SOURCE PHASE SPACE:
E-BEAM DISTRIBUTION PARAMETERS

P HASE SP ACE
DIMENSION
DISTRIBUTION
MEAN
DISTRIBUTION
VARIANCE
HIGHER
DISTRIBUTION
MOMENTS
x
y
z
px
py
pz
<x>
<y>
<z>
<p x>
<p y>
<p z>
<(x-<x>) 2>
<(y-<y>) 2>
<(z-<z>) 2>
<(p x-<p x>) 2>
<(p y-<p y>) 2>
<(p z-<p z>) 2>












R. Tatchyn
P ROBABILITY
DENSITY
FUNCTION
Siingle-electron Radiation
Cone Distribution
Parameters and Relations:
?
?
?
?
?
?
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
2ps r s rx’
> l/2;
2ps ry s ry’ > l/2;
2p s r s rf /f > l/2
2
Key source parameters:
Spectral flux:
(photons per second, per 0.1% BW)
Brightness*:
(photons per unit phase space)
For a Gaussian e-beam distribution
B
N phot / s T
8p 3s Tx s Tx 's Ty s Ty 's Tf / f
Here the standard deviations are quadratic concatenations of the
e-beam and single-electron radiation-cone standard deviations.
T 2
e 2
r 2
(
s
)

(
s
)

(
s
E.g.,
x
x
x)
(s Tf / f ) 2  4(s eE / E)2  (s rf / f )2
*[photons/s,mm2,mr2,0.1%BW]
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
3
Example:
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
4
Examples:
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
5
(em ittance)
(em ittance
+ acceptance)
(em ittance
+acceptance)
(acceptance)
• any experiment typically measures the phase space
parameters of some particle distribution, to some resolution
• the requirenments are met by designing for the phase space
characteristics of the source, x-ray optics, and detector
• Questions: What is the current status of these elements in SR
applications related to Medical and Biological Imaging? Are they
optimal? Are new directions and technologies in sight?
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
6
Features of conventional coronary K-edge
subtraction angiography (moderate resolution):
• wiggler source to enable subject scanning in 1D
• critical energy substantially lower than IK edge
• operation on a high energy storage ring
• crystal monochromator
• integrated mega-facilities envisaged (Mezentsev et al,
Wiedemann, Dix et al)
Possible areas of innovation
• short-period insertion devices on compact rings (no harmonics)
• single shot imaging (pulsed-mode sources?)
• 2D e-beam and/or optical rastering
• multilayer optics for harmonic suppression
• new imaging techniques, advanced X-ray Optics
• one major goal: smaller-scale, economical instruments
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
7
EXAMPLE: Conventional DDSA* imaging
WIGGLER
*DDSA: Dual-energy Digital Subtraction Angiography
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
8
EXAMPLE: Single-shot DDSA imaging based on a Micropole
Undulator (MPU) + low energy storage ring*
Synchrotron
Radiation
Solid State PSD
DetectorS
Micropole
Undulator:
Magnets
Optics
B
Computer
E
Micropole
Undulator:
Laser/Mcrowave Cavity
Reduced-Energy
Storage Ring
Electronics
Dichromatic
Beam
Electron Beam
Display
Computer-Controlled
Chair
*P. Csonka and R. Tatchyn, “Short Period Undulators for Human
Angiography,”
Proceedings of the Workshop on Fourth Generation Sourcrs,
7-99
M.8503A3
Cornacchia, H. Winick, eds., SLAC, CA, 2/24-27,1992, SSRL 92/02,
pp. 5556-564.
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
9
EXAMPLE: An alternative imaging technique (SXI (Paul Csonka))
Imposing novel requirements on optics and the insertion device
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
10
INSERTION DEVICES
K0.934 l u [cm ]B0 [T]
Kl u 2p * c 
4p * c 
K 2 lu
*
r(t)  
sin 
t , 0,  ct 
sin 
t 
 lu 
16p 2  lu 
2p

* K
2p* c 
4p*c 
 *K 2
*
(t)  
cos
t, 0,  
t 
2 cos


l

4


l


u
u
 2pc  * K 2p *c  pc * 2 K 2 4p * c 
Ý
(t)  
sin 
t , 0,
sin 
t 
lu
 l u 
 2 lu
 lu 

2
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
K ~ 1 (undulator)
lu  K 2 
l  2 1


2
2 
K  1 (wiggler)
2 2
 c [keV]  E [GeV]B0 [T]
3
11
Motivation for shorter period insertion devices:
 

2 
2 e 2 6  Ý 2
P
      Ý
   (CGS)


3 c
Total emitted power (flux):
2 e2
P

3 c
For sinusoidal trajectory

4


2
Ý
pe r p .

2
2
2e 2 2pKc  2e 2 2pKc 2 1 K / 2
P

 
3c  lu  3c
l
2 lu
lu  K 2 
l  2 1

2  2 
Effect on Brightness (assume fixed K, fixed l, fixed device length):
 reduce lu

l'u
lÕu  Energy   l
u
in-band flux

Nu

Brightness

1
lu
(however, must also consider net effect of energy reduction on emittance)
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
12
Spectral flux advantage of a short-period
(u1) vs. long-period (u2) undulator
1st
u1
1st
u2
P
P
K (1  K / 2)  lu2  Lu1  Iu1 
 







K (1 K / 2) I lu1 II Lu2 III I u2 IV
2
u1
2
u2
2
u2
2
u1
• for arbitrary fixed Ku1 ~ Ku2 u1 advantage

lu2 /lu1
• certain technologies (for which lu1<< lu2) may also limit u1 to
Lu1<< Lu2 and Iu1<< Iu2
• however, in that limit factor II above can compensate these
factors and reduction in machine energy can be correspondingly
enormous.
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
13
Spectral flux advantage of a short-period
undulator vs. a wiggler (assume Ku < 0.75)
Pu 3E B L I  2K u  Bu  Lu  I u 
 2
 





2  
Pw Ew B L I
(l[Å]) I Bw II Lw III Iw IV
2
u
2
u u u
2
w w w
• if the technology limits Bu ~ Bw then the possibility of making
Lw >> Lu can limit the short-period advantage
• radiation-field or pulsed-current technologies may allow Bu to
exceed the Bw (of conventional wigglers) by orders of magnitude
• a promising technology of the former type appears to be the
focused-laser undulator (Bu  kT Ku  0.1-1)
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
14
REFERENCES TO e-BEAM/LASER UNDULATOR SOURCE R&D:
[1] F.R. Arutynian, V.A. Tumanian. 'The Compton effect on relativistic electrons and the possibility of obtaining
high energy beams," Phys. Lett., 4 (1963), p. 176-178.
FIRST EXPERIMENT AT CEA:
[2] R.H. Milburn. "Electron scattering by an intense polarized photon field," Phys. Rev. Lett. 10 (1963) p. 75-77.
[3] L. Federici et. al. “Backward Compton scattering of laser light against high-energy electrons: the LADON
photon beam at Frascati.,” Nuovo Cimento (59B), ser.2, no.2,1980, p.247.
SLAC WORKSHOP ON FOURTH GENERATION LIGHT SOURCES
[4] P. L. Csonka, R. Tatchyn, “Short Period Undulators for Human Angiography,” Proceedings of the Workshop on
Fourth Generation Light Sources, M. Cornacchia nd H. Winick, eds., SLAC, CA, February 24-27, 1992, SSRL
92/02, pp. 555-564.
[5] E. Esarey, P. Sprangle, A. Ting, S.K. Ride, “Laser synchrotron radiation as a compact source of tunable, short
pulse hard X-rays,” Nuclear Instruments & Methods in Physics Research, Section A (Accelerators, Spectrometers,
Detectors and Associated Equipment); 1 July 1993; vol.A331, no.1-3, p.545-9
LASER/e-BEAM COOLING
[6] V. Telnov, “Laser cooling of electron beams for linear colliders,” Phys. Rev. Lett. 78, 1997, p. 4757.
LESR “Laser Electron Storage Ring” PROJECT (SLAC)
[7] Z. Huang, R. Ruth, "Laser-electron storage ring," Phys. Rev. Lett.; 2 Feb. 1998; vol.80, no.5, p.976-9.
NESTOR “Next-generation Electron STOrage Ring” PROJECT (KIPT)
[8] E. Bulyak, P.Gladkikh, A.Zelinsky at al, ”Compact X-ray source based on Compton scattering,” Nuclear Instr. &
Meth. In Phys Research A, 487, 2002, pp. 241-248.
:
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
15
Stanford/KIPT Project*
Laser Undulator
• features:
Figure 1. Layout of the NESTOR storage ring.
BM1-4 are bending magnets ,Q1-20 are quadrupole magnets, S1-18 are sextupole magnets, M1-2
are mirrors of an optical resonator
1) high rep rate laser
2) cavity length = interbunch spacing
3) ultra-high Q mirror cavity
*V. Agafonov et al, “Spectral Characteristics of an Advanced X-ray Generator at the KIPT based on Compton
Back-scattering,” presented at the 2003 SPIE Annual Meeting, San Diego, CA, Aug. 4, 2003, Conference 5194A.
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
16
KIPT X-Ray Generator Parameters:
Parameter
Values
Units
Laser Wavelength
Laser Pulse Length (FWHM)
Peak Laser Pulse Power
Laser Repetition Rate
Cavity Mirror Reflectance
Cavity Damp ing (1/e) Time
Cavity Damp ing Time Duty Factor
Peak Stored Laser P ulse P ower
Average Stored Laser P ulse P ower
Laser Beam Waist (FW HM)
10600
0.03
210
10
0.9999
0.00022
80
900
360
100
Å
m
MW
KHz
s
%
MW
MW
m
Laser Beam Rayleigh Length
Peak Field Intensity
Average Field Intensity
Equivalent Average K P arameter
0.03
31
23
0.0023
m
Tesla
Tesla
-
100
196
MeV
-
Electron Beam Energy
Electron Beam 
Electron Energy Spread (FWHM)
Horizontal Emi ttance
Vertical Emittance
Horizontal beta
Vertical beta
Horizontal Beam Size (FW HM)
3.5
70
70
0.03
0.025
~100
%
nm-rad
nm-rad
m
m
m
Vertical Beam Size (FWHM)
~100
m
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
17
KIPT Spectrum
Radiation far-field target geometry in normalized angle space
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
18
KIPT Spectrum
Full angle-integrated
spectrum through the
2.5th harmonic. The
photon energy spread
induced
by
the
electron beam energy
spread is 3.5% (rms).
Storage ring current
~10 mA.
1 = 180 keV. The duty
factor based on a
single 3 cm (FWHM)
long electron bunch is
~ 514.
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
19
KIPT Spectrum
KIPT
Compton
backscattering
spectrum
integrated
over
the
emittance-defined
angular
aperture of the electron beam
through the 2.5th harmonic.
The photon energy spread
induced by the electron beam
energy spread is 3.5% (rms).
Storage ring current ~ 10
mA.. 1 = 180 keV. The duty
factor based on a single 3 cm
(FWHM) long electron bunch
is ~ 514.
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
20
KIPT X-RAY GENERATOR RANGE OF FLUX
PERFORMANCE vis-a-vis SPEAR
(The chart at left compares the
spectral flux performance of SPEAR
vs. the present design of NESTOR.
However, NESTOR’s photon energy
(~180 keV) is ~21 times greater than
SPEAR’s.. Thus, if the ordinate’s
units were changed to energy flux
the performance markers for
NESTOR would need to be shifted
upward by more than one decade.
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
21
EXAMPLE: Flux requirements for single-shot DDSA
1)
2
3)
4)
5)
6)
1000 x 1000 element Position Sensitive Detector (PSD)
100x 100 detector p
e
~ 105 photons/pixel/shot (~300 S/N)
98% system (optics/patient/detector) losses
~1% useful source bandwidth
20 ms “single-shot” exposure
SOURCE REQUIREMENTS:
1)
2)
3)
4)
~ 5 x 1012 photons/shot
~ 2.5 x 1014 photons/s
Laser field ~ 500-1000 T
Laser power ~ 1 TW  50 J stored laser pulse energy
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
22
Pulsed-Cavity Storage Ring (R&D) Requirements:
1) Mirrors (if metal) must be capable of absorbing
~1000 J ( if R ~0.9999) to ~ 10000 J (if R ~ 0.999)
without spoiling cavity Q. Either metal or dielectric
mirrors must be capable of withstanding the associated
electric fields without spoiling the Q.
2) TW laser (system) must be capable of sustaining
~ 10 KhZ rep rate for ~ 20+ ms.
3) Power supply system must provide stored-energy
capability of ~ 0.1 - 1 MJ
4) Laser fleld- e-beam interaction must not impact
the stored beam lifetime more than fractionally
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
23
Selected References to Short-Period Undulator, Machine, and
Optics Technologies R&D at SSRL and SLAC (1984-present):
[1]] R. O. Tatchyn, "Optimum Zone Plate Theory and Design (invited)," in X-Ray Microscopy, Springer Series in Optical Sciences,
Volume 43, Springer-Verlag, Berlin, 1984, p.40.
[2] R. Tatchyn and P. Csonka, "Submillimeter Period Undulators: New Horizons in Insertion Device Technology
(invited),” Proceedings of the Adriatico Research Conference on Undulator Magnets for Synchrotron Radiation\ and Free lectron
Lasers, R. Bonifacio, L. Fonda, and C. Pellegrini, eds., ICTP, Trieste, Italy, June 1987, World Scientific, Hong Kong, 1987, p. 39.
[3] R. Tatchyn, P. Csonka, and A. Toor, "Micropole Undulators in Accelerator and Storage Ring Technology,”
Proceedings of he 1987 IEEE Particle Accelerator Conference, IEEE Cat. No.87CH2387--9, 1681(1987).
[4] R. Tatchyn, A. Toor, J. Hunter, R. Hornady, D. Whelan, G.Westenskow, P. Csonka, T. Cremer, and E. Kdllne, "Generation of
Soft X-Ray/VUV Photons with a Hybrid/Bias Micropole Undulator on the LLNL Linac," Journal of X-Ray Science and
Technology 1, 79(1989).
[5] R. Tatchyn, P. Csonka, and A. Toor, "Perspectives on micropole undulators in synchrotron radiation
technology,” Rev. Sci. Instrum. 60(7), 1796(1989).
[6] P. Csonka and R. Tatchyn, "Short-Period Undulators for Human Angiography," Proceedings of the Workshop on Fourth \
Generation Light Sources, M. Cornacchia and H. Winick, eds., SSRL, Feb. 24-27, 1992, SSRL Report No. 92/02, p.555.
[7] D. Boyers, A. Ho, Q. Li, M. Piestrup, M. Rice, and R. Tatchyn, "Tests of variable-band multilayers designed for
nvestigating optimal signal-to-noise vs. artifact signal ratios in dual-energy digital subtraction angiography (DDSA)
maging systems," Nucl. Instrum. Meth. A 346(3), 565(1994). [SLAC-CRADA-9302]
[8] R. Tatchyn, T. Cremer, D. Boyers,1 Q. Li,1 M. Piestrup, “Multilayer optics for harmonic control of angiography beamline
sources,” Review of Scientific Instruments, Volume 67, Number 9, September 1996. [SLAC-CRADA-9302]
[9] R. Tatchyn, T. Cremer, P. Csonka, D. Boyers, and M. Piestrup, ”Remarks on the Role of Multilayer Optics and Short Period
Insertion Devices for Medical Imaging Sources and Applications,” Medical Applications of Synchrotron Radiation: Proceedings of
the International Workshop on Medical Applications of Synchrotron Radiation,M. Ando and C. Uyama, eds., , Springer Verlag,
Tokyo, 1998. [SLAC-CRADA-9302]
[10] J.T. Cremer, M.A Piestrup.; H.R. Beguiristain, C.K. Gary, R.H. Pantell, R. Tatchyn, “Cylindrical compound refractive X-ray
lenses using plastic substrates;” Review of Scientific Instruments; Sept. 1999; vol.70, no.9, p.3545-8.
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
24
SUMMARY
• molecular imaging and other frontier applications with nm or
sub-nm resolution requirements will require LCLS or other ultralow emittance 4G SR machines, insertion devices, and optics
• high resolution imaging or structural studies of crystals may be wellmatched to short period undulators on low energy storage rings - if
augmented with suitable optics
• moderate or low-resolution applications such as coronary
angiography are likely to benefit strongly from the development of shortperiod undulator technology, in particular laser-field undulators.
• pulsed-mode operation of machine and insertion device may
allow performance parameters and imaging modes unattainable
in steady-state operation
• the development of unconventional techniques such as SXI will require
corresponding innovations in optical, machine, and insertion device
technologies
R. Tatchyn
IAC Medical Imaging Workshop
Pocatello, Idaho, 8/7-8/03
25