Transcript Math 260

Ch 2.6: Exact Equations & Integrating Factors

Consider a first order ODE of the form

M

(

x

,

y

) 

N

(

x

, Suppose there is a function 

y

)

y

  0 such that  (

x

,

y

) 

M

(

x

,

y x

and such that  (

x,y

) =

c

), 

y

(

x

,

y

defines

y

)  =

N

(

x

,

y

)  (

x

) implicitly. Then

M

(

x

,

y

) 

N

(

x

,

y

)

y

    

x

   

y dy dx

d dx

 

x

,  (

x

)  and hence the original ODE becomes

d dx

 

x

,  (

x

)   0 Thus  (

x,y

) =

c

defines a solution implicitly. In this case, the ODE is said to be

exact

.

Theorem 2.6.1

Suppose an ODE can be written in the form

M

(

x

,

y

) 

N

(

x

,

y

)

y

  0 ( 1 ) where the functions

M

,

N

,

M y

rectangular region

R

: (

x

,

y

)  ( and

N x

 ,  ) x are all continuous in the (  ,  ). Then Eq. (1) is an

exact

differential equation iff

M y

(

x

,

y

) 

N x

(

x

,

y

),  (

x

, That is, there exists a function 

y

) 

R

( 2 ) satisfying the conditions 

x

(

x

,

y

) 

M

(

x

,

y

), 

y

(

x

,

y

) 

N

(

x

,

y

) ( 3 ) iff

M

and

N

satisfy Equation (2).

Example 1: Exact Equation

(1 of 4) Consider the following differential equation.

dy dx

 

x

4

x

  4

y y

 (

x

 4

y

)  ( 4

x

y

)

y

  0 Then

M

(

x

,

y

) 

x

 4

y

,

N

(

x

,

y

)  4

x

y

and hence

M y

(

x

,

y

)  4 

N x

(

x

,

y

)  ODE is exact From Theorem 2.6.1, 

x

(

x

,

y

) 

x

 4

y

, 

y

(

x

,

y

)  4

x

y

Thus  (

x

,

y

)   

x

(

x

,

y

)

dx

  

x

 4

y

dx

 1 2

x

2  4

xy

C

(

y

)

Example 1: Solution

(2 of 4) We have 

x

(

x

,

y

) 

x

 4

y

, 

y

(

x

,

y

)  4

x

y

and  (

x

,

y

)   

x

(

x

,

y

)

dx

  

x

 4

y

dx

 1 2

x

2  4

xy

C

(

y

) It follows that 

y

(

x

,

y

)  4

x

y

 4

x

C

 (

y

) 

C

 (

y

)  

y

C

(

y

)   1 2

y

2 

k

Thus  (

x

,

y

)  1 2

x

2  4

xy

 1 2

y

2 

k

By Theorem 2.6.1, the solution is given implicitly by

x

2  8

xy

y

2 

c

Example 1: Direction Field and Solution Curves

(3 of 4) Our differential equation and solutions are given by

dy dx

 

x

 4

y

4

x

y

 (

x

 4

y

)  ( 4

x

y

)

y

  0 

x

2  8

xy

y

2 

c

A graph of the direction field for this differential equation, along with several solution curves, is given below.

Example 1: Explicit Solution and Graphs

(4 of 4) Our solution is defined implicitly by the equation below.

x

2  8

xy

y

2 

c

In this case, we can solve the equation explicitly for

y

:

y

2  8

xy

x

2 

c

 0 

y

 4

x

 17

x

2 

c

Solution curves for several values of

c

are given below.

Example 3: Non-Exact Equation

(1 of 3) Consider the following differential equation. ( 3

xy

y

2 )  ( 2

xy

x

3 )

y

  0 Then

M

(

x

,

y

)  3

xy

y

2 ,

N

(

x

,

y

)  2

xy

x

3 and hence

M y

(

x

,

y

)  3

x

 2

y

 2

y

 3

x

2 

N x

(

x

,

y

)  ODE is not exact To show that our differential equation cannot be solved by this method, let us seek a function  such that 

x

(

x

,

y

) 

M

 3

xy

y

2 , 

y

(

x

,

y

) 

N

 2

xy

x

3 Thus  (

x

,

y

)   

x

(

x

,

y

)

dx

   3

xy

y

2 

dx

 3

x

2

y

/ 2 

xy

2 

C

(

y

)

Example 3: Non-Exact Equation

(2 of 3) We seek  such that 

x

(

x

,

y

) 

M

 3

xy

y

2 , 

y

(

x

,

y

) 

N

 2

xy

x

3 and  (

x

,

y

)   

x

(

x

,

y

)

dx

Then 

y

(

x

,

y

)  2

xy

x

3   3

x

2   3

xy

y

2 

dx

 3

x

2

y

/ 2  / 2  2

xy

C

 (

y

)

xy

2 

C

(

y

) 

C

 (

y

) ?

x

3  3

x

2 / 2 

C

(

y

) ??

x

3

y

 3

x

2

y

/ 2 

k

Thus there is no such function  . However, if we (incorrectly) proceed as before, we obtain

x

3

y

xy

2 

c

as our implicitly defined

y

, which is not a solution of ODE.

Integrating Factors

It is sometimes possible to convert a differential equation that is not exact into an exact equation by multiplying the equation by a suitable integrating factor  (

x

,

y

):

M

(

x

,

y

) 

N

(

x

,

y

)

y

  0  (

x

,

y

)

M

(

x

,

y

)   (

x

,

y

)

N

(

x

,

y

)

y

  0 For this equation to be exact, we need  

M

 

y

N

x

M

y

N

x

 

M y

N x

   0 This partial differential equation  is a function of

x d

dx

 alone, then

M y

N N x

 , 

y

may be difficult to solve. If = 0 and hence we solve provided right side is a function of

x

only. Similarly if  is a function of

y

alone. See text for more details.

Example 4: Non-Exact Equation

Consider the following non-exact differential equation. ( 3

xy

y

2 )  (

x

2 

xy

)

y

  0 Seeking an integrating factor, we solve the linear equation

d

 

M y

N x N

 

d

     (

x

) 

x dx dx x

Multiplying our differential equation by  , we obtain the exact equation ( 3

x

2

y

xy

2 )  (

x

3 

x

2

y

)

y

  0 , which has its solutions given implicitly by

x

3

y

 1 2

x

2

y

2 

c