Transcript Document
A New Handbook and Web Site of Properties of Special Functions Dan Lozier NIST IMA Workshop Special Functions in the Digital Age July 22, 2002 Impact of NBS Handbook • Sales – Government edition >150,000 – Commercial editions ~500,000 • Citations (SCI) – approaching 1500/yr recently – cited about every 1.5 hours • Citing journals – primarily physical science, engineering Milton Abramowitz 1915-1958 Irene Stegun 1919- NBS Handbook Obsolescence • Math research since 1960 • Computer developments since 1960 Impact of Computers • Tables are dead! – Fortran I (1954 - 57) – IMSL & NAG (1970 - 71) • Formulas in books are dying! (maybe) – Macsyma (1969) – TeX (1977) – MathML, OpenMath, …, MKM Mathematical Knowledge Management • Formalism vs. Intuitionism • Formal vs. informal proof • Computers can make formal proofs possible! (maybe) • Encode semantics, not just syntax • Encode proof techniques DLMF Approach Mathematics Database DLMF Handbook DLMF Web Site Other DLMF Documents (future) DLMF Database • Collection of computer files – – – – AMS-Latex PostScript VRML MathML (future) • Basis for generating DLMF documents • Constructed, maintained at NIST Audience for DLMF Documents • Experienced scientific professionals – – – – Physicists, other scientists Engineers Statisticians Mathematicians, esp. applied • Trainers and teachers (future) DLMF Handbook • Model: NBS Handbook – Large pages – Double-column – 1000 pages • • • • Color graphics Produced by NIST Marketed by a commercial publisher Low price DLMF Handbook Content • • • • • • • Validated math properties Sample applications Computation Chapters on individual functions Chapters on methodology References Indexes DLMF Handbook Style • Model: NBS Handbook – concise – oriented to users of special functions • Start with specifics, move to general • Not traditional math style • Not pedagogical DLMF Web Site • DLMF Handbook content plus – – – – software references & downloading search engine dynamic graphics formula downloading • Constructed, maintained by NIST – latex2html – free access Timetable 97. 98. 99. 00. 01. 02. 03. Conception Sample chapter, Web prototype, NSF proposal NSF funding received Authors identified, chapter outlines received Chapters received and edited Chapters received, revised, edited, validated Book published, Web site announced NIST Editors • • • • General - Dan Lozier Mathematics - Frank Olver Physics – Charles Clark Information Technology – Ron Boisvert Associate Editors • • • • • • • Special Functions – Dick Askey, Nico Temme Physics – Michael Berry, Leonard Maximon Chemistry – Bill Reinhardt Numerical Analysis – Walter Gautschi Combinatorics – Morris Newman Computer Algebra – Peter Paule Statistics – Ingram Olkin Chapters 1-7 (Subject to change.) MP. Mathematical and Physical Constants — C. Clark AL. Algebraic and Analytical Methods — R. Askey, F. Olver, R. Roy AS. Asymptotic Approximations — F. Olver, R. Wong NM. Numerical Methods — W. Gautschi, C. Brezinski CA. Computer Algebra — P. Paule, F. Chyzak EF. Elementary Functions — R. Roy, P. Turner, S. Krantz GA. Gamma Function — R. Askey, R. Roy Chapters 8-13 EX. Exponential, Logarithmic, Sine and Cosine Integrals — N. Temme ER. Error Functions, Dawson’s and Fresnel Integrals — N. Temme IG. Incomplete Gamma Functions and Related Functions — R. Paris AI. Airy and Related Functions — F. Olver BS. Bessel Functions — F. Olver, L. Maximon ST. Struve Functions and Related Functions — R. Paris Chapters 14-20 CH. Confluent Hypergeometric Functions — A. Olde Daalhuis CW. Coulomb Wave Functions — M. Seaton PC. Parabolic Cylinder Functions — N. Temme LE. Legendre Functions & Spherical Harmonics — T.M. Dunster HY. Hypergeometric Functions — A. Olde Daalhuis GH. Generalized Hypergeometric Functions — R. Askey, A. Olde Daalhuis, D. Richards QH. q-Hypergeometric Functions — G. Andrews Chapters 21-27 CP. Classical Orthogonal Polynomials — T. Koornwinder, R. Koekoek, R. Swarttouw OO. Other Orthogonal Polynomials — T. Koornwinder, R. Koekoek, R. Swarttouw EL. Elliptic Integrals — B. Carlson TH. Theta Functions — P. Walker, W. Reinhardt MT. Riemann Theta Functions — B. Deconinck JA. Jacobian Elliptic Functions — P. Walker, W. Reinhardt WE. Weierstrass Elliptic and Modular Functions — P. Walker, W. Reinhardt Chapters 28-34 BP. Bernoulli and Euler Numbers and Polynomials — K. Dilcher ZE. Zeta and Related Functions — T. Apostol CM. Combinatorial Analysis — D. Bressoud NT. Functions of Number Theory — T. Apostol SM. Probability and Statistical Distributions and Functions — I. Olkin, N. Sedransk, D. Kemp. MA. Mathieu Functions and Hill’s Equation — G. Wolf LA. Lame Functions; Spheroidal Wave Functions — H. Volkmer Chapters 35-40 SW. Spheroidal Wave Functions — H. Volkmer HE. Heun Functions — B. Sleeman, V. Kuznetsov PT. Painleve Transcendents — P. Clarkson IC. Integrals with Coalescing Saddles — M. Berry, C. Howls TJ. 3j, 6j, 9j Symbols — L. Maximon RN. Random Numbers — G. Marsaglia, G. Casella DLMF Handbook Mockup ..\..\DLMF\docs\book.ps 3 Early Examples of Research Stimulated by DLMF • Jacobian elliptic functions: For fixed z, what is the behavior of sn(z,k), cn(z,k), ... for complex k? • Euler dilogarithm of complex argument • Elliptic integrals (Carlson’s form): improvement of algorithms for computation NIST Staff • • • • • • • Information Architect – Bruce Miller Graphics – Bonita Saunders, Qiming Wang Search Engine – Abdou Youssef (GWU) Web Site – Joyce Conlon, Marje McClain Statistics Consultant – Raghu Kacker Algorithms – Bruce Fabijonas (SMU) Students – Brianna Blaser, Elaine Kim, Dan Cardy, Stuart Fletcher, Grace Chu NIST Funding • Covers all internal, some external costs • Sources – – – – – IT Lab (1997 - ) Physics Lab (1997 - ) Standard Reference Data (1997 - ) Manufacturing Engineering Lab (98 - ) Advanced Technology Program (99 – 00) NSF Funding • Covers only external costs – Authors contracts – Validators contracts – Associate editors costs • Source: KDI Program • Administered by DMS • Received September 1999 (3 years + 1) Author’s Contracts • Deliverables – Outline – Acceptable draft – Final draft • Copyright transfer required • Detailed instructions provided Validator’s Contracts • Purpose: verify all mathematics • Deliverable: Validation report DLMF Public Web Site http://dlmf.nist.gov