Narrow Sized Dual-functional Microcapsules: Contact

Download Report

Transcript Narrow Sized Dual-functional Microcapsules: Contact

Carl Wei He (presenter)
Dr. Song Liu
University of Manitoba

Background
 Concepts of Microcapsules
 Applications (esp. in textiles)

Antimicrobial polyurea microcapsules
 Objective: provide contact wound dressings;
 Design: Feature and reasoning of the method

Details and characterizations
 Shell thickness
 Drug release
 Contact antimicrobial property

Future research
Polyurea
Artificial blood cells
medicine
Targeted/Triggered release
Multi- functional carrier
Electronic ink
engineering
Water treatment
Self-healing resin
Polyurea microcapsules
(PUMC)
Traditional
applications
Textiles
Agricultures

Cosmetic textiles

Aromatherapy & Fragrance Textiles

Thermochromic & Photochromic textiles

Pest repellent textiles

Thermo regulating textiles

Flame retardant textiles
Dual functions:
 On-contact antimicrobial property
 To provide an active shell surface

Controlled drug release property
 To control the thickness of shell
Application
 Chronic wound care dressing:
 infection control and nutrition supply

Morphology:
 controlled size and size distribution

Shell: matrix property:
 Stiff enough to retain spherical shape
 Thick enough to provide mass regulation

Shell: Surface property:
 Easily dispersed in water for application
 Contact-killing effect

Modification by incorporating a
multifunctional surfactant
▪
▪
▪
▪
Reduce interface tension
Provide antimicrobial functionality
Covalently bound to the matrix
Increase shell thickness
QAs
a
b
c
MC+Q
d
f
MCQ100
e
Cross-section of fluorescein stained model capsules; left: post-modified model
capsule; right: in-situ modified model capsule; (a)(d) freshly prepared model
capsule; (b)(e)cracked model capsules after CTAC extraction; (c)(f) close-up of
fluorescein stained shell
6.00E-07
Model capsules washed against Milli-Q water
Before/after CTAC extraction
QAs density mol/cm2
5.00E-07
4.99E-07
Before
extraction
4.00E-07
3.00E-07
After
extraction
2.00E-07
1.29E-07
1.00E-07
7.00E-08
0.00E+00
Control
MCQ100
MC+Q
Quantification of QAs density of model capsules. Error bar is generated
from 3 batch-to-batch measurements. Control: PUMC model capsule;
MCQ100: in-situ modified model capsule; MC+Q: post-modified model
capsule;
Up: in-situ modified
polyurea
microcapsules
(MCQ)
Down: control
polyurea
microcapsules
(PUMC).
(a) MCQ dispersed
in water;
(b) dry MCQ;
(c) PUMC dispersed
in water;
(d) dry PUMC
7-day in-vitro cumulative drug release profile for MCQ-Cmr; insert: first 24hr
release curve; (drug load = 3.33 wt%; efficiency = 31%)
MCQ
a
Control
Blank
b
c
(a): MCQ, Qas modified
capsule;
(b): Control, Polyurea
capsule without
modification;
(c): Blank, last batch of
washing solution of MCQ
sample.
Bacteria load:
4.54 log10 cfu/cm2;
Capsule density:
0.88 mg/cm2
MCQ
Control
Bacteria load: 1.54 log10 cfu /cm2
0.22
0.44
0.66
Density of microcapsules mg /cm2
0.88
MCQ
Control
Bacteria load: 3.54 log10 cfu /cm2
0.22
0.44
0.66
Density of microcapsules mg /cm2
0.88




Isocyanate residue on polyurea
microcapsules can be utilized for
functionalization.
On-contact antimicrobial can be achieved on
polyurea microcapsules
Sustained drug release of drug is achieved by
thick shell microcapsules.
Polyurea microcapsule of narrow size
distribution can be synthesized
 Ease of immobolization
 Larger surface for functionalization

Platform for functionalzation
 Other functional surfactants could be developted
volumn distribution ratio
30%
25%
diameter distribution
by volumn
20%
15%
10%
5%
0%
0
1
2
3
4 5 6 7
diameter /um
8
9
10
Manitoba Health Research Council (MHRC)
Operating and Establishment grants
Dr. Paul H.T. Thorlakson Foundation Fund
University of Manitoba Research Grant Program
(URGP)
Dr. Xiaochen Gu
Dr. Lingdong Li
Dr. Rick Holley
Dr. Saqer Herzallah
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Hashemi, S.A. and M. Zandi, Encapsulation process in synthesizing polyurea microcapsules containing pesticide. Iranian Polymer
Journal, 2001. 10(4): p. 265-270.
Hickey, J., N.A.D. Burke, and H.D.H. Stover, Layer-by-layer deposition of clay and a polycation to control diffusive release from
polyurea microcapsules. Journal of Membrane Science, 2011. 369(1-2): p. 68-76.
Jabbari, E., Morphology and structure of microcapsules prepared by interfacial polycondensation of methylene bis( phenyl
isocyanate) with hexamethylene diamine. Journal of Microencapsulation, 2001. 18(6): p. 801-809.
Jacquemond, M., et al., Perfume-Containing Polyurea Microcapsules with Undetectable Levels of Free Isocyanates. Journal of
Applied Polymer Science, 2009. 114(5): p. 3074-3080.
Giraud, S., et al., Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polymer
Degradation and Stability, 2005. 88(1): p. 106-113.
Sarier, N. and E. Onder, The manufacture of microencapsulated phase change materials suitable for the design of thermally
enhanced fabrics. Thermochimica Acta, 2007. 452(2): p. 149-160.
Zhong, Y., J.H. Feng, and S.L. Chen, Dyeing of polyester using microencapsulated disperse dyes in the absence of auxiliaries.
Coloration Technology, 2005. 121(2): p. 76-80.
Tang, Y.D., et al., Preparation and Properties of Modified PolyGram Nano-Microencapsulated Phase Change Materials, in
Materials Science and Engineering Applications, Pts 1-3, G.J. Zhang and J. Xu, Editors. 2011, Trans Tech Publications Ltd: StafaZurich. p. 7-12.
Takahashi, T., Y. Taguchi, and M. Tanaka, Preparation of polyurea microcapsules containing pyrethroid insecticide with
hexamethylene diisocyanate isocyanurate. Journal of Applied Polymer Science, 2008. 107(3): p. 2000-2006.
Li, J., et al., Polyurea Microcapsules: Surface Modification and Capsule Size Control. Journal of Polymer Science Part a-Polymer
Chemistry, 2011. 49(14): p. 3038-3047.
Sanchez-Silva, L., et al., Functionalization of microcapsules for the removal of heavy metal ions. Journal of Chemical Technology
and Biotechnology, 2011. 86(3): p. 437-446.
Ni, P.H., M.Z. Zhang, and N.X. Yan, EXTRACTION OF HEXAVALENT CHROMIUM IONS WITH POLYUREA MICROCAPSULES.
Journal of Membrane Science, 1994. 89(1-2): p. 1-8.
Li, G., et al., Preparation and characterization of polyurea microcapsules containing colored electrophoretic responsive fluid.
Journal of Materials Science, 2007. 42(13): p. 4838-4844.
Caruso, M.M., et al., Robust, Double-Walled Microcapsules for Self-Healing Polymeric Materials. Acs Applied Materials &
Interfaces, 2010. 2(4): p. 1195-1199.
Yang, J.L., et al., Microencapsulation of Isocyanates for Self-Healing Polymers. Macromolecules, 2008. 41(24): p. 9650-9655.
16. El-Gibaly, I. and A. Anwar, Hemolysate-filled polyethyleneimine and polyurea microcapsules as potential red
blood cell substitutes: effect of aqueous monomer type on properties of the prepared microcapsules.
International Journal of Pharmaceutics, 2004. 278(1): p. 25-40.
17. Schwartz, L., et al., Controlled-release systems for the delivery of cyromazine into water surface. Journal of
Agricultural and Food Chemistry, 2003. 51(20): p. 5972-5976.
18. Ni, P.H., M.Z. Zhang, and N.X. Yan, EFFECT OF OPERATING VARIABLES AND MONOMERS ON THE
FORMATION OF POLYUREA MICROCAPSULES. Journal of Membrane Science, 1995. 103(1-2): p. 51-55.
19. Salaun, F., et al., Application of Contact Angle Measurement to the Manufacture of Textiles Containing
Microcapsules. Textile Research Journal, 2009. 79(13): p. 1202-1212.
20. Yin, G.N., et al., Slightly surface-functionalized polystyrene microspheres prepared via Pickering emulsion
polymerization using for electrophoretic displays. Journal of Colloid and Interface Science, 2011. 361(2): p. 456464.
21. Tiller, J., Antimicrobial Surfaces, in Advances in Polymer Science. 2011, Springer Berlin / Heidelberg. p. 1-25.
22. Ferreira, L. and A. Zumbuehl, Non-leaching surfaces capable of killing microorganisms on contact. Journal of
Materials Chemistry, 2009. 19(42): p. 7796-7806.
23. Nigmatullin, R., F.G. Gao, and V. Konovalova, Permanent, Non-Leaching Antimicrobial Polyamide
Nanocomposites Based on Organoclays Modified with a Cationic Polymer. Macromolecular Materials and
Engineering, 2009. 294(11): p. 795-805.
24. Yudovin-Farber, I., et al., Antibacterial effect of composite resins containing quaternary ammonium
polyethyleneimine nanoparticles. Journal of Nanoparticle Research, 2010. 12(2): p. 591-603.
25. Cui, D., et al., Contact-Killing Polyelectrolyte Microcapsules Based on Chitosan Derivatives. Advanced
Functional Materials, 2010. 20(19): p. 3303-3312.
26. Moulari, B., NANOPARTICLES: THERAPEUTIC APPROACHES FOR BACTERIAL DISEASES. Nanotherapeutics:
Drug Delivery Concepts in Nanoscience, ed. A. Lamprecht. 2009: Pan Stanford Publishing Pte Ltd. 199-225.
27. Volodkin, D.V., et al., Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation. Langmuir, 2004. 20(8):
p. 3398-3406.
28. Lebedeva, O.V., et al., Salt softening of polyelectrolyte multilayer microcapsules. Journal of Colloid and Interface Science, 2005.
284(2): p. 455-462.
29. Scher, H.B., et al., Pesticide microcapsules. 2001, Syngenta Limited, UK . p. 80 pp.
30. Kobašlija, M. and D.T. McQuade, Polyurea microcapsules from oil-in-oil emulsions via interfacial polymerization.
Macromolecules, 2006. 39(19): p. 6371-6375.
31. Herrmann, C., D. Crespy, and K. Landfester, Synthesis of hydrophilic polyurethane particles in non-aqueous inverse
miniemulsions. Colloid and Polymer Science, 2011. 289(10): p. 1111-1117.
32. Mason, B.P., et al., Microcapsules with Three Orthogonal Reactive Sites. Organic Letters, 2009. 11(7): p. 1479-1482.
33. Rosenbauer, E.M., K. Landfester, and A. Musyanovych, Surface-Active Monomer as a Stabilizer for Polyurea Nanocapsules
Synthesized via Interfacial Polyaddition in Inverse Miniemulsion. Langmuir, 2009. 25(20): p. 12084-12091.
34. Caillier, L., et al., Polymerizable semi-fluorinated gemini surfactants designed for antimicrobial materials. J Colloid Interface Sci,
2009. 332(1): p. 201-7.
35. Caillier, L., et al., Synthesis and antimicrobial properties of polymerizable quaternary ammoniums. European Journal of Medicinal
Chemistry, 2009. 44(8): p. 3201-3208.
36. Angelos, S., et al., pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew Chem Int Ed Engl,
2008. 47(Copyright (C) 2011 U.S. National Library of Medicine.): p. 2222-6.
37. Sahre, K., et al., Monitoring of the Synthesis of Hyperbranched Poly(urea-urethane)s by Real-Time Attenuated Total Reflection
(ATR)-FT-IR Spectroscopy. Macromolecular Materials and Engineering, 2006. 291(5): p. 470-476.
38. Hickey, T., et al., Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable
medical devices. Biomaterials, 2002. 23(7): p. 1649-1656.
39. Siewert, M., et al., FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. Aaps Pharmscitech,
2003. 4(1): p. E7.
40. Li, J., et al., A New Approach to Studying Microcapsule Wall Growth Mechanisms. Macromolecules, 2009. 42(7): p. 2428-2432.
41. Dhumal, S.S. and A.K. Suresh, Understanding interfacial polycondensation: Experiments on polyurea system and comparison with
theory. Polymer, 2010. 51(5): p. 1176-1190.
42. Dhumal, S.S., S.J. Wagh, and A.K. Suresh, Interfacial polycondensation-Modeling of kinetics and film properties. Journal of
Membrane Science, 2008. 325(2): p. 758-771.
43. Price, K.E., et al., Self-Diffusion of Linear Polymers within Microcapsules. Macromolecules,
2006. 39(22): p. 7681-7685.
44. Biswas, S., et al., Absorption and emission spectroscopic studies of fluorescein dye in alkanol,
micellar and microemulsion media. Journal of Photochemistry and Photobiology A:
Chemistry, 1999. 123(1-3): p. 121-128.
45. Schmitt, V., C. Cattelet, and F. Leal-Calderon, Coarsening of alkane-in-water emulsions
stabilized by nonionic poly(oxyethylene) surfactants: The role of molecular permeation and
coalescence. Langmuir, 2004. 20(1): p. 46-52.
46.Thivilliers, F., et al., Bicontinuous emulsion gels induced by partial coalescence: Kinetics and
mechanism. Europhysics Letters, 2006. 76(2): p. 332-338.
47. Murata, H., et al., Permanent, non-leaching antibacterial surfaces - 2: How high density
cationic surfaces kill bacterial cells. Biomaterials, 2007. 28(32): p. 4870-4879.
48. Martin del Valle, E.M., M.A. Galan, and R.G. Carbonell, Drug Delivery Technologies: The Way
Forward in the New Decade. Industrial & Engineering Chemistry Research, 2009. 48(5): p.
2475-2486.
49.Page, K., M. Wilson, and I.P. Parkin, Antimicrobial surfaces and their potential in reducing
the role of the inanimate environment in the incidence of hospital-acquired infections. Journal
of Materials Chemistry, 2009. 19(23): p. 3819-3831.
50. Lin, J., et al., Bactericidal Properties of Flat Surfaces and Nanoparticles Derivatized with
Alkylated Polyethylenimines. Biotechnology Progress, 2002. 18(5): p. 1082-1086.