Prezentacja programu PowerPoint

Download Report

Transcript Prezentacja programu PowerPoint

Calculations of interplay
between anizotropy and
coupling energy in magnetic
multilayers systems
M.Czapkiewicz
Department of Electronics, AGH University of
Science and Technology, POLAND
• Schedule
•
•
•
one-domain S-W model
MAGEN2 - program for simulation of
magnetization process of multilayers systems
examples of calculations and experiments
–
–
–
–
–
•
PSV
SV
Biased FP
TMR SV
SV AAF
To-do tasks
Definitions
• Magnetization:
M ( H )  MS cos
monolayer
M ( H )  (t1MS1 cos 1  t 2 MS 2 cos 2) /(t1  t 2)
bilayer
Rx  R  R  R cos2 
• AMR (ML)
R  R
• GMR (BL)
1  cos   
RR 

2
1
2
Task to compute: how  depend on H ?
Stoner-Wohlfarth model
• Surface energy density (example for 2 layers with
planar UA anisotropy):
E1 , 2 ,...   J12 cos( 2 1 )
 K1t1 cos2 1  K 2t2 cos2  2
 EZ 1 (1 )
 EZ 2 ( 2 )
where EZi (i )  ti 0 M Si (H X cosi  HY sini )
• Numerical gradient seeking of local minimum for
each H field
2
2
2
2
2
dE
d E
 E  E   E 
0
0

0
2
2


d i
 i  j   j i 
d ii
Program interface
• Input:
– Saturation magnetization
– Effective anisotropy
energy
– Anisotropy axis definition
– Interlayer coupling energy
– Field range
• Output:
–
–
–
–
 angles for each layer
Total magnetization M(H)
Total energy
To do: GMR, TMR…
1. example – PSV-type bilayer
M1
M2
1.5
1.0
M [T]
0.5
M1
M2
0.0
M1
M2
-0.5
-1.0
M1
M2
-1.5
-15
-10
-5
0
Field [kA/m]
5
10
15
Measured example:
Py2.8nm/Co2.1nm/Cu2nm/Co3nm
Fit for: Ku1/Ku2 = 31
GMR only in non-parallel state
Influence of ferromagnetic
coupling on PSV switching
simulation sv4206
2.0
1.5
J=0
J>>0
1.0
Ms
0.5
0.0
-0.5
-1.0
AF-state only if JFF weak
-1.5
-2.0
-20
-10
0
H [kA/m]
10
20
2. example – SV with AF layer
1.5
M1
M2
1.0
M [T]
0.5
0.0
M1
M2
-0.5
Measured sample:
Co4.4nm/Cu2.3nm/Co4.4nm/FeMn10nm
-1.0
M1
M2
-1.5
exchange coupling energy JFP-FF= 7.9 10-6 J/m2
-30
-20
-10
Field [kA/m]
0
10
interface coupling energy JEB = 94 10-6 J/m2
anisotropy energy KFF = 580 J/m3,
effective AF anizotropy KAF = 80·103 J/m3
Influence of FP-FF ferromagnetic
coupling on GMR of SV structure
J FP FF
J AF  FF
• Analytical simulation for j 
j = -0.1
R+R
j = 0.25
j = 0.2
j = 0.1
Rezystancja [a.u.]
3
j=0.25 j=0.2
k¹ t 1i2
j=0.4
j = 0.4
2
1

R
2
0
-1.00
-0.75
h1
-0.50
Pole h [a.u.]
-0.25
0.00
h2
-1.00
-0.75
-0.50
Pole h
-0.25
0.00
3. Influence of effective anisotropy of AF
layer on SV biased field
M.Tsunoda model: ordering
of AF layer grains (during
deposition for top-type SV
or during field cooling for
bottom-type SV) lead to
increase total eff. anisotropy
Energy density model of AF-FP system:
E   J EB cos( AF   FP )
 t FP M FP  0 H cos FP  K FPt FP cos2  FP
 K AF t AF cos2  AF
Example of AF-FP system (after f.c.)
Si/Ta5nm/Cu10nm/Ta5nm/NiFe2nm/Cu5nm/MnIr10nm/CoFe2,5nm
annealed: 200oC/1h, field cooling 1kOe
CoFe – 25 Å
1.0
MnIr – 100Å
fit for:
10-6
J/m2
JEB= 200
,
KAF = 40000 J/m3.
Courtesy of Prof. C.G. Kim
Chungnam University RECAMM,
Taejon, Korea
M/MS
0.5
0.0
-0.5
-1.0
-200
-100
0
H [kA/m]
100
200
4. Influence of KAF to JEB ratio of
FF/S/FF/AF structure on M(H) switching
symulacja - du¿e KAF - SV
symulacja - ma³e KAF - PSV
1
Y Data
Y Data
1
0
-1
0
-1
-2e+2
-1e+2
0
1e+2
2e+2
-2e+2
-1e+2
H [kA/m]
J1= 1.1E-0005 Eeb= 5.2E-0004 K1=2.1E+0002 K2= 5.2E+0003 Kaf= 10.4E+0004
1e+2
2e+2
J1= 1.1E-0005 Eeb= 5.2E-0004 K1=2.1E+0002 K2= 5.2E+0003 Kaf= 2.6E+0004
540
540
360
360
180
180
Y Data
Y Data
0
H [kA/m]
0
0
-180
-180
-360
-360
-540
-540
-2e+2
-1e+2
0
H [kA/m]
1e+2
2e+2
-2e+2
-1e+2
0
H [kA/m]
1e+2
2e+2
Dependence of HEB on KAF
140
120
160
Kaf vs Hex2
Kaf vs Hc2
140
120
100
80
80
60
60
40
40
20
0
1e+3
20
1e+4
1e+5
KAF [J/m2]
0
1e+6
HC2 [kA/m]
HEX2 [kA/m]
100
4. MTJ example
Buffer:Si/Ta5nm/Cu10nm/Ta5nm/Ni80Fe202nm/Cu5nm
AF layer: Ir25Mn75 (10nm), FP layer Co70Fe30 (2.5nm),
isolator spacer and FF layer AlOx(1.5nm)/Co70Fe30(2.5nm)/Ni80Fe20 (10nm)
Fit for:
wide range of field
1.0
0.5
M/Ms
anizotropy energy of FF layer K1 = 210 J/m3,
0 Ms1 = 0.85 T,
exchange coupling energy FF-FP
J12= 1.04 10-6 J/m2 (FF).
effective anizotropy energy of FP layer
K2 = 95000 J/m3,
0 Ms2 = 1.5 T,
interface coupling energy FP-AF
JEB= 470 10-6 J/m2.
effective anizotropy energy of AF layer
KAF = 50000 J/m3
0.0
-0.5
-1.0
-400
-200
0
H [kA/m]
200
400
5. SV with Artificial AF – before annealing
E   J EB cos( AF   FP1 )  J 23 cos( FP1   FP 2 )  K AF t AF cos2  AF
 t FP1M FP1 0 H cos FP1  K FP1t FP1 cos2  FP1
 t FP 2 M FP 2  0 H cos FP 2  K FP1t FP 2 cos2  FP 2
 t FF M FF  0 H cos FF  K FF t FF cos2  FF
AFF-SV:
AF/FP1/S1/FP2/S2/FF
Example:
Si(111)/Ta10.5nm/PtMn19.8nm/
CoFe2nm/Ru0.77nm/CoFe2nm/
Cu2.2nm/CoFe0.8nm/NiFe3.8nm/
Ta5nm/Cu0.5nm
• “To do” list for MAGEN2 program
•


•

•
bugs fixing
experimental data in background
more layers
3D axis of anisotropy and field definition
animation of magnetisation vector of each
ferromagnetic layer during simulation
process
GMR/TMR characteristics
END
S-W model for monolayer
• Total energy E = EH + EU + ED
EH  0M H
• Zeeman energy
• Anisotropy energy EU  KU n n'2
1
E


• Demagnetizing energy D 2 H D   0 M
Field in plane
(Nx=Ny0, Nz1):
E  0 M s H cos( )  KU  cos2 (  )
H D  N0M
4. Example of Magnetic Tunneling Junction
Energy density model:
Ta – 50Å
NiFe – 100 Å
CoFe – 25 Å
Al2O3 – 15 Å
CoFe – 25 Å
MnIr – 100Å
Cu – 50 Å
NiFe – 20 Å
Ta – 50 Å
Cu – 100 Å
Ta – 50 Å
Substrate Si (100)
E
 J12 cos( 2 1 )
 t1M10 H cos1  K1t1 cos2 (1 1 )
 t2 M 2 0 H cos 2  K2t2 cos2 ( 2 2 )
 J EB cos( AF  2 )  K AFt AF cos2 ( AF   AF )
 t3 M 3  0 H cos 3  K 3t3 cos2 ( 3   3 )