Angular momentum

Download Report

Transcript Angular momentum

Orbital Angular Momentum
• In classical mechanics, conservation of angular
momentum L is sometimes treated by an effective
(repulsive) potential
L2
2m r2
• Rewriting the R term in Schr. Eqn. We see an
angular momentum term which arises from the
Theta equation’s separation constant
 1 d
2 m r 2 dr
2
(
2
r dR
dr
)
l ( l 1)  2 R
2 mr
2

Ze 2 R
4 0 r
 ER
• eigenvalues for L2 (its expectation value) are
l (l  1) 2
• the spherical harmonics are also eigenfunctions of
this operator and of Lz
P460 - angular momentum
1
Orbital Angular Momentum
• Look at the quantum mechanical angular
momentum operator (classically this “causes” a
rotation about a given axis)
  
Lrp


p   i 
f
z
 cosf

 sin f
 0

 sin f
cosf
0
0

0
1 
• look at 3 components
Lx  ypz  zp y  i( y z  z y )
Ly  zp x  xpz  i( z x  x z )
Lz  xpy  ypx  i( x y  y x )
• operators do not necessarily commute
Lx L y  L y Lx  [ Lx , L y ] 
  2 [( y
(z

z

x
i 2 ( y
z
x

x

z

y
)( z
)( y
x

y

z

x
x
z

y

z
)
)] 
)  iLz
P460 - angular momentum
2
Polar Coordinates
• Write down angular momentum components in
polar coordinates (E&R App M or Griffiths 4.3.2)
Lx  i(sin f   cot cosf f )
Ly  i( cosf   cot sin f f )
Lz  i f
• and with some trig manipulations
L   [
2
2

1
sin  
(sin 


)
2
1
sin 2  f 2
]
• but same equations when solving angular part of
S.E. and so
L2zYlm  L2z lm m  ml2 2Ylm 
L Ylm   [
2
2

1
sin  
(sin


ml2
)  sin 2  ]Ylm
 l (l  1) Ylm
2
• and know eigenvalues for L2 and Lz with spherical
harmonics being eigenfunctions
P460 - angular momentum
3
Commutation Relationships
• Look at all commutation relationships
[ Lx , L y ]  iLz , [ L y , Lz ]  iLx , [ Lz , Lx ]  iL y
[ L y , L y ]  [ Lx , Lx ]  [ Lz , Lz ]  0
or [ Li , L j ]  i ijk Lk
 ijk  tensor
 0, any indices sam e,  1, all different
• since they do not commute only one component of
L can be an eigenfunction (be diagonalized) at any
given time
• but there is another operator that can be
simultaneously
diagonalized
2
2
2
2
L  Lx  Ly  Lz
[ L2 , Lz ]  L2 Lz  Lz L2  ( L2x  L2y ) Lz  Lz ( L2x  L2y )  0
u sin g :
Lx ( Lx Lz )  Lx ( Ly  Lz Lx )
( Lz Lx ) Lx  ( Ly  Lx Lz ) Lx
Ly ( Ly Lz )   Ly ( Lx  Lz Ly )
( Lz Ly ) Ly  ( Lx  Ly Lz ) Ly
P460 - angular momentum
4
Group Algebra
• The commutaion relations, and the recognition that
there are two operators that can both be
diagonalized, allows the eigenvalues of angular
momentum to be determined algebraically
• similar to what was done for harmonic oscillator
• an example of a group theory application. Also
shows how angular momentum terms are combined
• the group theory results have applications beyond
orbital angular momentum. Also apply to particle
spin (which can have 1/2 integer values)
• Concepts later applied to particle theory: SU(2),
SU(3), U(1), SO(10), susy, strings…..(usually
continuous)…..and to solid state physics (often
discrete)
• Sometimes group properties point to new physics
(SU(2)-spin, SU(3)-gluons). But sometimes not
(nature doesn’t have any particles with that group’s
properties)
P460 - angular momentum
5
Sidenote:Group Theory
• A very simplified introduction
• A set of objects form a group if a “combining”
process can be defined such that
1. If A,B are group members so is AB
2. The group contains the identity AI=IA=A
3. There is an inverse in the group A-1A=I
4. Group is associative (AB)C=A(BC)
• group not necessarily commutative
AB  BA
Abelian
non-Abelian
AB  BA
• Can often represent a group in many ways. A table,
a matrix, a definition of multiplication. They are
then “isomorphic” or “homomorphic”
P460 - angular momentum
6
Simple example
• Discrete group. Properties of group (its
“arithmetic”) contained in Table
1 a b c
1 1 a b c
a a b c 1
b b c 1 a
c c 1 a b
• If represent each term by a number, and group
combination is normal multiplication
11
ai
b  1
a  a  i  i  1  b
c  i
• or can represent by matrices and use normal matrix
multiplication
 1 0
 0  1
 1 0 
 0 1
, a  
, b  
, c  

1  
 0 1
1 0 
 0  1
 1 0
P460 - angular momentum
7
Continuous (Lie) Group:Rotations
• Consider the rotation of a vector
    r '  Rr
r' f r r
 
| r ' || r | length sam e
   
r '  r  f  r near identity
• R is an orthogonal matrix (length of vector doesn’t
change). All 3x3 real orthogonal matrices form a
group O(3). Has 3 parameters (i.e. Euler angles)
• O(3) is non-Abelian R(f ) R( )  R( ) R(f )
• assume angle change is small
 cosf

Rz (f )   sin f
 0

 1

 R   fz
 f
y

 sin f
cos
0
 fz
1
fx
0  1
 
0   f
1   0
f
1
0
0

0
1 
fy 

 f x  sm all angles
1 
P460 - angular momentum
8
Rotations
• Also need a Unitary Transformation (doesn’t
change “length”) for how a function is changed to a
new function by the rotation


 (r ) changes to  (r )



1 
 ( Rr )   (r ) or  (r )   ( R r )


U R (f ) (r )   (r ) unitary
  
  (r  f  r )
• U is the unitary operator. Do a Taylor expansion
   
  

 (r  f  r )   (r )  (f  r )   (r )
 i    
  (r )  (f  r )  p (r )

  i 

  (r )  f  (  r  p) (r )
 
i
U R  1  f  L
• the angular momentum operator is the generator of
the infinitesimal rotation
P460 - angular momentum
9
• For the Rotation group O(3) by inspection as:
 1

R   fz
f
y

 fz
1
fx
fy 

 
i
 fx  U R  1   f  L
1 

• one gets a representation for angular momentum
0

Lx  i   0
0

0
0
1
0 
 0


 1 L y  i 0
 1
0 

0
0
0
1
0


0  Lz  i   1
0
0 

1
0
0
0

0
0 
[Li , L j ]  iijk Lk
• satisfies Group Algebra
• Another group SU(2) also satisfies same Algebra.
2x2 Unitary transformations (matrices) with det=1
(gives S=special). SU(n) has n2-1 parameters and
so 3 parameters U U  1
• Usually use Pauli spin matrices to represent. Note
O(3) gives integer solutions, SU(2) half-integer
(and integer)
 0 1
0  i
1 0 


 Ly  2 
 Lx  2 

Lx  
 1 0
i 0 
 0  1

2
P460 - angular momentum
10
Eigenvalues “Group Theory”
• Use the group algebra to determine the eigenvalues
for the two diagonalized operators Lz and L2.
• The X and Y components aren’t 0 (except if L=0)
but can’t be diagonalized and so ~indeterminate
with a range of possible values
• Define raising and lowering operators (ignore
Plank’s constant for now)
for SU ( 2) m atrices
L  Lx  iLy
0
L  12 
1
0
1
L  2 
1
1 i  0
  2 
0
i
1 i  0
  2 
0
i
 i 0
  
0  0
 i 0
  
0  1
1

0
0

0
• and operates on a 1x2 “vector” (varying m) raising
or lowering it
1
0

0
0

1
1  0   1   0
     , 
0  1   0   0
0  0   0   0
     , 
0  1   0   1
1  1   0 
    
0  0   0 
0  1   0 
    
0  0   1 
P460 - angular momentum
s  12 , ms  12   
 0
 0
1
1
s  2 , ms   2   
1
11
• Can also look at matrix representation for 3x3
orthogonal (real) matrices
• Choose Z component to be diagonal gives choice of
matrices
 1
 1
 
 
Lz m  m m  Lz  0   1 0 ,
 0
 0
 
 
L  Lx  iLy
1

Lz   0
0

0

0 
 1
0
0
0
 0  0
 0
 0
   
 
 
Lz  1   0 1 , Lz  0   1 0 
 0  0
 1
 1
   
 
 
• can write down (need sqrt(2) to normalize)
 0 1 0


L  2  0 0 1 
 0 0 0


 0 0 0


L  2  1 0 0 
 0 1 0


 0 1 0


Lx  12 ( L  L )  12  1 0 1 , Ly  2i ( L  L ) 
 0 1 0


0  i 0 


1
i
0

i


2
0 i
0 

 1 0 1
 1 0  1  1 0 0 



 

L  L  L  L  12  0 2 0   12  0 2 0    0 0 0 
 1 0 1
 1 0 1   0 0 1



 

 2 0 0


  0 2 0   2  Identity[l (l  1)  1* 2]
 0 0 2


2
2
x
2
y
2
z
• and then work out X and Y components
 1  0  0  1  0  0
           
L  0    0 , L  1    0 , L  0    1 
 0  0  0  0  1  0
           
L  L Li
2
i
T
i
 1  0  0  0  0  0
           
L  0    1 , L  1    0 , L  0    0 
 0  0  0  1  0  0
           
P460 - angular momentum
12
Eigenvalues
• Done in Griffiths 4.3.1. (also Schiff QM)
2.
• Start with two diagonalized
operators
L
and
L
z
lm L2 l m  l ll  mm
lm Lz l m  m ll  mm
• where m and l are not yet known
• Define raising and lowering operators and easy to
work out some relations
L  Lx  Ly L2  L L  L2z  Lz
[ Lz , L ]  L [ L2 , L ]  0 [ L , L ]  2Lz
• Assume if g is eigenfunction of Lz and L2. it is also
eigenfunction of L+L2 ( L g )  L ( L2 g )  l ( L g ) (commute)
Lz ( L g )  ( Lz L  L Lz ) g  L Lz g
 L g  L m g  (m  )(L g )
• new eigenvalues (and see raises and lowers value)
 m
for operatorsL
P460 - angular momentum
13
Eigenvalues
• There must be a highest and lowest value as can’t
have the z-component be greater than the total
L g H  0
L g L  0
• For highest state, let l be the maximum eigenvalue
Lz g H  lg H (re min der : L2 g H  lg H )
• can easily show
L2 g H  ( L L  L2z  Lz ) g H
 ( 0   2l 2   2l )  l   2l (l  1)
• repeat for the lowest state
Lz g L  l g L  l   2l (l  1)
equatel  l (l  1)  l (l  1)  l  l
• eigenvalues of Lz go from -l to l in integer steps (N
steps)
N
l 
 int eger or half  int eger
2
l  0, 12 ,1, 32 .......(SU (2) only)
m  l ,l  1,l  2.....l  1, l (2l  1 term s)
P460 - angular momentum
14