Chapter 1 – Introduction to Computers and C++ Programming

Download Report

Transcript Chapter 1 – Introduction to Computers and C++ Programming

Chapter 1 – Introduction to C++
Programming
Outline
1.7
1.8
1.10
1.13
1.14
1.20
1.21
1.22
1.23
1.24
1.25
1.26
History of C and C++
C++ Standard Library
Visual Basic, Visual C++ and C#
The Key Software Trend: Object Technology
Basics of a Typical C++ Environment
Introduction to C++ Programming
A Simple Program: Printing a Line of Text
Another Simple Program: Adding Two Integers
Memory Concepts
Arithmetic
Decision Making: Equality and Relational Operators
Thinking About Objects: Introduction to Object Technology
and the Unified Modeling Language
 2003 Prentice Hall, Inc. All rights reserved.
1
2
1.7 History of C and C++
• History of C
– Evolved from two other programming languages
• BCPL and B
– “Typeless” languages
– Dennis Ritchie (Bell Laboratories)
• Added data typing, other features
– Development language of UNIX
– Hardware independent
• Portable programs
– 1989: ANSI standard
– 1990: ANSI and ISO standard published
• ANSI/ISO 9899: 1990
 2003 Prentice Hall, Inc. All rights reserved.
3
1.7 History of C and C++
• History of C++
–
–
–
–
Extension of C
Early 1980s: Bjarne Stroustrup (Bell Laboratories)
“Spruces up” C
Provides capabilities for object-oriented programming
• Objects: reusable software components
– Model items in real world
• Object-oriented programs
– Easy to understand, correct and modify
– Hybrid language
• C-like style
• Object-oriented style
• Both
 2003 Prentice Hall, Inc. All rights reserved.
4
1.8 C++ Standard Library
• C++ programs
– Built from pieces called classes and functions
• C++ standard library
– Rich collections of existing classes and functions
• “Building block approach” to creating programs
– “Software reuse”
 2003 Prentice Hall, Inc. All rights reserved.
5
1.10 Visual C++
• Visual C++
– Microsoft’s implementation of C++
• Includes extensions
• Microsoft Foundation Classes (MFC)
• Common library
– GUI, graphics, networking, multithreading, …
– Shared among Visual Basic, Visual C++, C
 2003 Prentice Hall, Inc. All rights reserved.
6
1.13 The Key Software Trend: Object
Technology
• Objects
– Reusable software components that model real world items
– Meaningful software units
• Date objects, time objects, paycheck objects, invoice objects,
audio objects, video objects, file objects, record objects, etc.
• Any noun can be represented as an object
– More understandable, better organized and easier to maintain
than procedural programming
– Favor modularity
• Software reuse
– Libraries
• MFC (Microsoft Foundation Classes)
• Rogue Wave
 2003 Prentice Hall, Inc. All rights reserved.
7
1.14 Basics of a Typical C++ Environment
• C++ systems
– Program-development environment
– Language
– C++ Standard Library
 2003 Prentice Hall, Inc. All rights reserved.
8
1.14 Basics of a Typical C++ Environment
Phases of C++ Programs:
1. Edit
2. Preprocess
Editor
Preprocessor
Compiler
Linker
3. Compile
Disk
Program is created in
the editor and stored
on disk.
Disk
Preprocessor program
processes the code.
Disk
Compiler creates
object code and stores
it on disk.
Disk
Primary
Memory
4. Link
Loader
5. Load
Disk
6. Execute
Loader puts program
in memory.
..
..
..
Primary
Memory
CPU
..
..
..
 2003 Prentice Hall, Inc. All rights reserved.
Linker links the object
code with the libraries,
creates a.out and
stores it on disk
CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.
9
1.14 Basics of a Typical C++ Environment
• Input/output
– cin
• Standard input stream
• Normally keyboard
– cout
• Standard output stream
• Normally computer screen
– cerr
• Standard error stream
• Display error messages
 2003 Prentice Hall, Inc. All rights reserved.
10
1.21 A Simple Program:
Printing a Line of Text
• Comments
–
–
–
–
Document programs
Improve program readability
Ignored by compiler
Single-line comment
• Begin with //
• Preprocessor directives
– Processed by preprocessor before compiling
– Begin with #
 2003 Prentice Hall, Inc. All rights reserved.
1
2
3
4
5
6
7
8
9
10
11
12
// Fig. 1.2: fig01_02.cpp
// A first program in C++.
Function main
#include <iostream>
11
Single-line comments.
Outline
returns an
directive to
integer
value.
Left brace
{ begins Preprocessor
function
fig01_02.cpp
include
input/output Statements
stream
begins
execution
Function
main appears
body. program
end with a(1 of 1)
header
file <iostream>.
exactly once
in every
C++ semicolon ;.
program..
fig01_02.cpp
// function main
int main()
{
std::cout << "Welcome to C++!\n";
return 0;
//
} // end function
Welcome to C++!
Corresponding right brace }
indicate
thatbody.
program ended successfully
ends
function
Stream
insertion
Name cout
belongs
to operator.
main namespace std.
Keyword return is one of
several means to exit
function; value 0 indicates
program terminated
successfully.
output (1 of 1)
 2003 Prentice Hall, Inc.
All rights reserved.
12
1.21 A Simple Program:
Printing a Line of Text
• Standard output stream object
– std::cout
– “Connected” to screen
– <<
• Stream insertion operator
• Value to right (right operand) inserted into output stream
• Namespace
– std:: specifies using name that belongs to “namespace”
std
– std:: removed through use of using statements
• Escape characters
– \
– Indicates “special” character output
 2003 Prentice Hall, Inc. All rights reserved.
13
1.21 A Simple Program:
Printing a Line of Text
Escape Sequence
Description
\n
Newline. Position the screen cursor to the
beginning of the next line.
\t
Horizontal tab. Move the screen cursor to the next
tab stop.
\r
Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the
next line.
\a
Alert. Sound the system bell.
\\
Backslash. Used to print a backslash character.
\"
Double quote. Used to print a double quote
character.
 2003 Prentice Hall, Inc. All rights reserved.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
// Fig. 1.4: fig01_04.cpp
// Printing a line with multiple statements.
#include <iostream>
// function main begins program execution
int main()
{
std::cout << "Welcome ";
std::cout << "to C++!\n";
return 0;
Outline
Multiple stream insertion
statements produce one line
of output.
fig01_04.cpp
(1 of 1)
fig01_04.cpp
output (1 of 1)
// indicate that program ended successfully
} // end function main
Welcome to C++!
 2003 Prentice Hall, Inc.
All rights reserved.
1
2
3
4
5
6
7
8
9
10
11
12
15
// Fig. 1.5: fig01_05.cpp
// Printing multiple lines with a single statement
#include <iostream>
// function main begins program execution Using newline characters
print on multiple lines.
int main()
{
std::cout << "Welcome\nto\n\nC++!\n";
return 0;
Outline
to
fig01_05.cpp
(1 of 1)
fig01_05.cpp
output (1 of 1)
// indicate that program ended successfully
} // end function main
Welcome
to
C++!
 2003 Prentice Hall, Inc.
All rights reserved.
16
1.22 Another Simple Program:
Adding Two Integers
• Variables
– Location in memory where value can be stored
– Common data types
• int - integer numbers
• char - characters
• double - floating point numbers
– Declare variables with name and data type before use
int integer1;
int integer2;
int sum;
– Can declare several variables of same type in one declaration
• Comma-separated list
int integer1, integer2, sum;
 2003 Prentice Hall, Inc. All rights reserved.
17
1.22 Another Simple Program:
Adding Two Integers
• Variables
– Variable names
• Valid identifier
– Series of characters (letters, digits, underscores)
– Cannot begin with digit
– Case sensitive
 2003 Prentice Hall, Inc. All rights reserved.
18
1.22 Another Simple Program:
Adding Two Integers
• Input stream object
– >> (stream extraction operator)
• Used with std::cin
• Waits for user to input value, then press Enter (Return) key
• Stores value in variable to right of operator
– Converts value to variable data type
• = (assignment operator)
– Assigns value to variable
– Binary operator (two operands)
– Example:
sum = variable1 + variable2;
 2003 Prentice Hall, Inc. All rights reserved.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
19
// Fig. 1.6: fig01_06.cpp
// Addition program.
#include <iostream>
Outline
// function main begins program execution
int main()
Declare integer variables.
{
int integer1; // first number to be input by user
int integer2; // second number to be input by user
Usewhich
stream
extraction
int sum;
// variable in
sum
will be stored
std::cout << "Enter first
std::cin >> integer1;
fig01_06.cpp
(1 of 1)
operator with standard input
stream to obtain
user input.
integer\n";
// prompt
// read an integer
std::cout << "Enter second integer\n"; // prompt
std::cin >> integer2;
// read
an integer
Calculations can
be performed
in output
sum = integer1 + integer2;
lines 18 and 20:
// assign result to sum
std::cout << "Sum is " <<
std::cout << "Sum is " << sum << std::endl; // print
return 0;
statements: alternative for
Stream manipulator
std::endl outputs a
newline, then “flushes output
integer1 + integer2 << std::endl;
sum buffer.”
// indicate that program ended successfully
} // end function main
Concatenating, chaining or
cascading stream insertion
operations.
 2003 Prentice Hall, Inc.
All rights reserved.
Enter first integer
45
Enter second integer
72
Sum is 117
20
Outline
fig01_06.cpp
output (1 of 1)
 2003 Prentice Hall, Inc.
All rights reserved.
21
1.23 Memory Concepts
• Variable names
– Correspond to actual locations in computer's memory
– Every variable has name, type, size and value
– When new value placed into variable, overwrites previous
value
– Reading variables from memory nondestructive
 2003 Prentice Hall, Inc. All rights reserved.
22
1.23 Memory Concepts
std::cin >> integer1;
integer1
45
std::cin >> integer2;
integer1
45
– Assume user entered 72
integer2
72
integer1
45
integer2
72
– Assume user entered 45
sum = integer1 + integer2;
sum
 2003 Prentice Hall, Inc. All rights reserved.
117
23
1.24
Arithmetic
• Arithmetic calculations
– *
• Multiplication
– /
• Division
• Integer division truncates remainder
– 7 / 5 evaluates to 1
– %
• Modulus operator returns remainder
– 7 % 5 evaluates to 2
 2003 Prentice Hall, Inc. All rights reserved.
24
1.24
Arithmetic
• Rules of operator precedence
– Operators in parentheses evaluated first
• Nested/embedded parentheses
– Operators in innermost pair first
– Multiplication, division, modulus applied next
• Operators applied from left to right
– Addition, subtraction applied last
Operator(s)
Operation(s)
• Operators
applied fromOrder
leftoftoevaluation
right (precedence)
()
Parentheses
*, /, or %
Multiplication Division Evaluated second. If there are several, they re
Modulus
evaluated left to right.
+ or -
Addition
Subtraction
 2003 Prentice Hall, Inc. All rights reserved.
Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.
Evaluated last. If there are several, they are
evaluated left to right.
25
1.25 Decision Making: Equality and
Relational Operators
• if structure
– Make decision based on truth or falsity of condition
• If condition met, body executed
• Else, body not executed
• Equality and relational operators
– Equality operators
• Same level of precedence
– Relational operators
• Same level of precedence
– Associate left to right
 2003 Prentice Hall, Inc. All rights reserved.
26
1.25 Decision Making: Equality and
Relational Operators
Sta nd a rd a lg eb ra ic
eq ua lity op era tor or
rela tiona l op era tor
C++ eq ua lity
or rela tiona l
op era tor
Exa m p le
of C++
c ond ition
Mea ning of
C++ c ond ition
>
>
x > y
x is greater than y
<
<
x < y
x is less than y

>=
x >= y
x is greater than or equal to y

<=
x <= y
x is less than or equal to y
=
==
x == y
x is equal to y

!=
x != y
x is not equal to y
Relational operators
Equality operators
 2003 Prentice Hall, Inc. All rights reserved.
27
1.25 Decision Making: Equality and
Relational Operators
• using statements
– Eliminate use of std:: prefix
– Write cout instead of std::cout
 2003 Prentice Hall, Inc. All rights reserved.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
28
// Fig. 1.14: fig01_14.cpp
// Using if statements, relational
// operators, and equality operators.
#include <iostream>
using std::cout;
using std::cin;
using std::endl;
// program uses cout
// program uses cin
// program uses endl
Outline
fig01_14.cpp
(1 of 2)
using statements eliminate
need for std:: prefix.
variables.
// function main begins programDeclare
execution
int main()
{
Can write
cout
cin
int num1; // first number
to be
readand
from
user
without
std::
prefix.
int num2; // second number to be read from user
cout << "Enter two integers, and I will tell you\n"
if structure compares values
<< "the relationships they satisfy: ";
of num1
and num2
to test for
If condition
is true
cin >> num1 >> num2;
// read
two integers
if ( num1 == num2 )
cout << num1 << " is
(i.e.,
equality.
values are equal), execute this
if structure compares
values
statement.
If condition
is true (i.e.,
of num1
andnum2
num2
test for
equal
to " <<
<< toendl;
values are not equal), execute
inequality.
this statement.
if ( num1 != num2 )
cout << num1 << " is not equal to " << num2 << endl;
 2003 Prentice Hall, Inc.
All rights reserved.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
if ( num1 < num2 )
cout << num1 << " is less than " << num2 << endl;
if ( num1 > num2 )
cout << num1 << " is greater than " << num2 << endl;
if ( num1 <= num2 )
cout << num1 << " is less than or equal to "
<< num2 << endl;
29
Outline
fig01_14.cpp
Statements
may
(2 of
2) be split over
several lines.
fig01_14.cpp
output (1 of 2)
if ( num1 >= num2 )
cout << num1 << " is greater than or equal to "
<< num2 << endl;
return 0;
// indicate that program ended successfully
} // end function main
Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12
 2003 Prentice Hall, Inc.
All rights reserved.
Enter two integers, and I will tell you
the relationships they satisfy: 7 7
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7
30
Outline
fig01_14.cpp
output (2 of 2)
 2003 Prentice Hall, Inc.
All rights reserved.
1.26 Thinking About Objects: Introduction to
Object Technology and the Unified Modeling
Language
• Object oriented programming (OOP)
– Model real-world objects with software counterparts
– Attributes (state) - properties of objects
• Size, shape, color, weight, etc.
– Behaviors (operations) - actions
• A ball rolls, bounces, inflates and deflates
• Objects can perform actions as well
– Inheritance
• New classes of objects absorb characteristics from existing classes
– Objects
• Encapsulate data and functions
• Information hiding
– Communicate across well-defined interfaces
 2003 Prentice Hall, Inc. All rights reserved.
31
1.26 Thinking About Objects: Introduction to
Object Technology and the Unified Modeling
Language
• User-defined types (classes, components)
– Data members
• Data components of class
– Member functions
• Function components of class
– Association
– Reuse classes
 2003 Prentice Hall, Inc. All rights reserved.
32
1.26 Thinking About Objects: Introduction to
Object Technology and the Unified Modeling
Language
• Object-oriented analysis and design (OOAD)
process
– Analysis of project’s requirements
– Design for satisfying requirements
– Pseudocode
• Informal means of expressing program
• Outline to guide code
 2003 Prentice Hall, Inc. All rights reserved.
33
1.26 Thinking About Objects: Introduction to
Object Technology and the Unified Modeling
Language
• Unified Modeling Language (UML)
– 2001: Object Management Group (OMG)
• Released UML version 1.4
– Model object-oriented systems and aid design
– Flexible
• Extendable
• Independent of many OOAD processes
• One standard set of notations
– Complex, feature-rich graphical language
 2003 Prentice Hall, Inc. All rights reserved.
34