ChemE 260 - Thermodynamics

Download Report

Transcript ChemE 260 - Thermodynamics

ChemE 260
Entropy Generation
Fundamental Property Relationships
Dr. William Baratuci
Senior Lecturer
Chemical Engineering Department
University of Washington
TCD 7: C & D
CB 6: 2, 7 & 9
May 6, 2005
Principle of Increasing Entropy

• Clausius:
Q
0
T
• Apply to Cycle 1-A-2-B

Q
 Q 
 Q 


0
T 1  T  A 2  T  B
2
• Introduce
Entropy:
1
 Q 
S1  S 2   

T

 int rev
2
1
 Q 
1  T  A  S1  S 2  0
2
 Q 
S 2  S1   

T

A
1
2
• Substitute into Clausius:
• Rearrange:
• Differential Form:
Q
dS 
T
Baratuci
ChemE 260
May 6, 2005
Entropy Generation
• Newest Statement of the 2nd Law : dS 
• Make Clausius into an equality:
Q
T
Q
dS 
 dSgen
T
• Entropy Generation, Sgen
Baratuci
ChemE 260
May 6, 2005
– Internally reversible processes:
S gen  0
– Irreversible processes:
S gen  0
– Impossible processes:
S gen  0
TS Diagram
• Area under
the curve:
2
Area   T dSˆ
1
• But:
ˆ
ˆ
Q
Int Re v  TdS
2
ˆ
ˆ
Area   Q
Int Re v  Q Int Re v
1
• Irreversible
ˆ

Q
Processes: dSˆ  Irrev  dSˆ gen
T
ˆ
ˆ
ˆ
Q
Irrev  TdS  TdSgen
2
ˆ
ˆ
Q
Irrev  Area   TdS gen
ˆ
Q
Irrev  Area
1
• Sgen is a path variable ! We must use  Sˆ gen:
Baratuci
ChemE 260
May 6, 2005
dS 
Q
  Sgen
T
Isolated Systems
• Entropy Statement of the
2nd
Law:
Q
S  
 Sgen
T
• Isolated Systems, Q = 0, therefore:
 Sisolated  Sgen  0
• The universe is an
isolated system:
 Suniv  Sgen  0
The Principle of Increasing Entropy
(a consequence of the 2nd Law)
• Divide the universe into two regions
– The system and the surroundings:
 Suniv   Ssys   Ssurr  Sgen  0
Baratuci
ChemE 260
May 6, 2005
The Gibbs Equations
• Definition of entropy:
QInt Re v  TdS
• 1st Law, closed system, Wb only:
Q  W  dU
• Boundary work for an
internally reversible process:
WInt Re v  P dV
• 1st Gibbs Equation:
dU  TdS  P dV
• Definition of enthalpy:
dH  dU  d(PV)
 dU  PdV  VdP
• Substitute in the 1st Gibbs Eqn:
dH  TdS  P dV  P dV  V dP
• 2nd Gibbs Eqn:
dH  TdS  V dP
Baratuci
ChemE 260
May 6, 2005
Incompressible Liquids
• Assumptions:
V0
• Gibbs Equations:
dV  0
CP  CV  C
dU  TdS  PdV
dH  TdS  V dP
• Enthalpy, internal energy
and heat capacity:
dU  CV dT  C dT
dH  CP dT  C dT
• Result:
Baratuci
ChemE 260
May 6, 2005
dH dU
C
dS 

  dT
T
T
T
C
dS   dT
T
Ideal Gases
•
Gibbs Equations:
dU  TdS  PdV
dH  TdS  VdP
•
Ideal Gas Heat
Capacities and EOS:
2
2
2
2
2
2
dU
P
S   dS  
  dV
T 1T
1
1
dH
V
S   dS  
  dP
T 1T
1
1
2
2
2
2
CoV
CoV
P
R
S  
dT   dV  
dT   dV
T
T
T
1
1
1
1 V
2
2
2
2
2
CoP
dH
V
R
S   dS  
  dP  
dT   dP
T 1T
T
P
1
1
1
1
•
Integration yields:
 V2 
CoV
S  
dT  R Ln  
T
 V1 
1
2
 P2 
CoP
S  
dT  R Ln  
T
 P1 
1
2
Baratuci
ChemE 260
May 6, 2005
Using the Shomate Equation
• This method is accurate for ideal gases, but it is tedious.
T
2
CoP
1
B
C
D
2
3
2 E 
dT

A

T

T

T

1000
dT
3
2 
1 T
T T  1000 10002
1000
T 
1
2
 A Ln
 1
T2
B
C/ 2
D/ 3
1 
2
2
3
3
2 E

T

T

T

T

T

T

1000

 2 1
 2 1  10003  2 1 


T1 1000
2  T22 T12 
10002
2
2
 T2 
CoV
CoP  R
CoP
T T dT  T T dT  T T dT  R Ln  T1 
1
1
1
T2
Baratuci
ChemE 260
May 6, 2005
T
T
Ideal Gas Entropy Function
• Definition:
T
S 
o
T

Tref
• Relationship with
Shomate Eqn :
• 1st Gibbs Eqns
for ideal gases :
CoP
dT
T
Where Tref is the reference
temperature at which S = 0.
T2
CoP
o
o
dT

S

S
T2
T1
T T
1
V 
CoV
S  
dT  R Ln  2 
T
 V1 
1
2
 V2 
 T2 
CoP

dT  R Ln    R Ln  
T
 T1 
 V1 
1
2
• Substitute the Ideal Gas
Entropy Function :
Baratuci
ChemE 260
May 6, 2005
 V2 
 T2 
S  S  S  R Ln    R Ln  
 T1 
 V1 
o
T2
o
T1
Ideal Gas Entropy Function
• Definition:
T
S 
o
T

Tref
• Relationship with
Shomate Eqn :
• 2nd Gibbs Eqns
for ideal gases :
CoP
dT
T
Where Tref is the reference
temperature at which S = 0.
T2
CoP
o
o
dT

S

S
T
T1
T T
2
1
 P2 
CoP
S  
dT  R Ln  
T
 P1 
1
2
• Substitute the Ideal Gas
P 
Entropy Function :
S  SoT  SoT  R Ln  2 
2
Baratuci
ChemE 260
May 6, 2005
1
 P1 
Next Class …
• Polytopic Processes: P V = C
– More to this type of process than meets the eye
– Determination of Boundary Work
– PV Diagrams Revisited !
• Isentropic Processes
– A special case of the polytropic process
– The Relative Property Method of analysis
Baratuci
ChemE 260
May 6, 2005