Transcript Slide 1
Chapter 9 Geometry 2012 Pearson Education, Inc. Slide 9-2-1 Chapter 9: Geometry 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 Points, Lines, Planes, and Angles Curves, Polygons, and Circles The Geometry of Triangles: Congruence, Similarity, and the Pythagorean Theorem Perimeter, Area, and Circumference Volume and Surface Area Transformational Geometry Non-Euclidean Geometry, Topology, and Networks Chaos and Fractal Geometry 2012 Pearson Education, Inc. Slide 9-2-2 Section 9-2 Curves, Polygons, and Circles 2012 Pearson Education, Inc. Slide 9-2-3 Curves, Polygons, and Circles • Curves • Triangles and Quadrilaterals • Circles 2012 Pearson Education, Inc. Slide 9-2-4 Curves The basic undefined term curve is used for describing figures in the plane. 2012 Pearson Education, Inc. Slide 9-2-5 Simple Curve; Closed Curve A simple curve can be drawn without lifting the pencil from the paper, and without passing through any point twice. A closed curve has its starting and ending points the same, and is also drawn without lifting the pencil from the paper. 2012 Pearson Education, Inc. Slide 9-2-6 Simple Curve; Closed Curve Simple; closed Simple; not closed 2012 Pearson Education, Inc. Not simple; closed Not simple; not closed Slide 9-2-7 Convex A figure is said to be convex if, for any two points A and B inside the figure, the line segment AB is always completely inside the figure. A B B Convex Not convex A 2012 Pearson Education, Inc. Slide 9-2-8 Polygons A polygon is a simple, closed curve made up of only straight line segments. The line segments are called sides, and the points at which the sides meet are called vertices. Polygons with all sides equal and all angles equal are regular polygons. 2012 Pearson Education, Inc. Slide 9-2-9 Polygons Convex Not convex Regular Polygons 2012 Pearson Education, Inc. Slide 9-2-10 Classification of Polygons According to Number of Sides Number of Sides 3 4 5 6 7 8 9 10 2012 Pearson Education, Inc. Name Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon Slide 9-2-11 Types of Triangles - Angles All Angles Acute One Right Angle One Obtuse Angle Acute Triangle Right Triangle Obtuse Triangle 2012 Pearson Education, Inc. Slide 9-2-12 Types of Triangles - Sides All Sides Equal Two Sides Equal No Sides Equal Equilateral Triangle Scalene Triangle 2012 Pearson Education, Inc. Isosceles Triangle Slide 9-2-13 Types of Quadrilaterals A trapezoid is a quadrilateral with one pair of parallel sides. A parallelogram is a quadrilateral with two pairs of parallel sides. A rectangle is a parallelogram with a right angle. 2012 Pearson Education, Inc. Slide 9-2-14 Types of Quadrilaterals A square is a rectangle with all sides having equal length. A rhombus is a parallelogram with all sides having equal length. 2012 Pearson Education, Inc. Slide 9-2-15 Angle Sum of a Triangle The sum of the measures of the angles of any triangle is 180°. 2012 Pearson Education, Inc. Slide 9-2-16 Example: Finding Angle Measures in a Triangle Find the measure of each angle in the triangle below. x° Solution (x + 20)° (220 – 3x)° x + x + 20 + 220 – 3x = 180 –x + 240 = 180 x = 60 Evaluating each expression we find that the angles are 60°, 80° and 40°. 2012 Pearson Education, Inc. Slide 9-2-17 Exterior Angle Measure The measure of an exterior angle of a triangle is equal to the sum of the measures of the two opposite interior angles. 2 4 1 3 The measure of angle 4 is equal to the sum of the measures of angles 2 and 3. Two other statements can be made. 2012 Pearson Education, Inc. Slide 9-2-18 Example: Finding Angle Measures in a Triangle Find the measure of the exterior indicated below. (x + 20)° (3x – 40)° Solution x° x + x + 20 = 3x – 40 2x + 20 = 3x – 40 x = 60 Evaluating the expression we find that the exterior angle is 3(60) – 40 =140°. 2012 Pearson Education, Inc. Slide 9-2-19 Circle A circle is a set of points in a plane, each of which is the same distance from a fixed point (called the center). 2012 Pearson Education, Inc. Slide 9-2-20 Circle A segment with an endpoint at the center and an endpoint on the circle is called a radius (plural: radii). A segment with endpoints on the circle is called a chord. A segment passing through the center, with endpoints on the circle, is called a diameter. A diameter divides a circle into two equal semicircles. A line that touches a circle in only one point is called a tangent to the circle. A line that intersects a circle in two points is called a secant line. 2012 Pearson Education, Inc. Slide 9-2-21 Circle P PR is a diameter. O is the center OQ is a radius. PQ is a secant line. Q O R PQ is a chord. PQ is an arc. T RT is a tangent line. 2012 Pearson Education, Inc. Slide 9-2-22 Inscribed Angle Any angle inscribed in a semicircle must be a right angle. To be inscribed in a semicircle, the vertex of the angle must be on the circle with the sides of the angle going through the endpoints of the diameter at the base of the semicircle. 2012 Pearson Education, Inc. Slide 9-2-23