Transcript Document

IN

-

S

itu study and

D

evelopment of processes involving nano-

POR

ous

S

olids

Institute of Physical Chemistry “I.G.Murgulescu” of Romanian Academy Laboratory of Chemical Kinetics

PROJECT OBJECTIVES

INSIDE-PORES

mission is “to develop

methodologies

for the

in-situ

application of both static and dynamic techniques and their combinations as a tool to probe the

evolution of properties

, which are relevant to specific processes that involve nanoporous solids, to greatly contribute to the extensive distribution of the relevant scientific knowledge and for INSIDE-PORES to become a focal point for scientists and technicians working in the field of porous materials”

Reference Materials

The Inside Pores SuperTool

Validated Predictive Model for referenece materials Real-Word (RW) Materials Predesign Materials

Real-Time Integrated Infrastructure

Validated Predictive Model Properties for RW Materials Tailoring of Properties of Pre-design Materials

Difraction Neutron Synchrontron Microscopy Spectroscopy The Inside Pores SuperTool Real-Time European integrated Infrastructure Macroscopic Permeability Sorbtion etc.

NanoMaterials & Multifunctional Materials Processes

Synthesis Catalysis Separations Membranes

-Zeolite crystals and membranes -Pillaring, Impregnation, Dealumination -Aerogels, Sol gel particle formation -Superhard materials (cements, etc) -Organic / inorganic hybrid materials -Superbundant vacancy systems -Hydrothermally stable Mesoporous metal oxides -Pseudo-enzyme catalysts -Carbon molecular sieves (CMS) Carbon nanotubes -Pore blocking by coke formation Aerogel whiskers -Deactivation poisoning -Probing of Catalytic reactions -Active site in situ determination -Phase transitions, sintering -Scanning of catalyst particles -In situ Diffusivity determination -Hydrocarbon conversion -Crystal changes under high pressure, temp.

- Pore blocking (by VOC, proteins etc) H 2 O sorption on carbons -Bio-molecules sep.

Conformations in the pores -Monitoring of sorption in pores -Scanning of pellets -Separation of Hg from aqueous media, soil, etc.

-Monitoring of PSA processes -GC, HPLC separations -Release of bio active molecules from the pore space

Magnetic Mat.

-Membrane fouling Cake formation -Active layer sorption/diffusion properties -Active layer characterization -Gas and electrolyte transport in separators -Grafting of ligands -Scanning of membrane -Functionalization during synthesis -Gas and electrolyte transport separators -Adsorption perm of probe molecules Superbundant vacancy systems

Electrodes (Supercaps, Li-Storage, Fuel cells)

-Accessibility of sites -Reduction of mesopore surface (Li storage) -Transport kinetics on different length scales -Gas transport as a function of relative humidity (fuel cells) -Activity of sites -Hydrophobicity-philicity of surface -Intercalation of Li+ in carbon

Pigments

Enhancement of IR-emissivity Wavelength selectivity of IR-Properties

Thermal insulations

-Gaseous thermal conductivity vs.

structure -Thermal conductivity in evacuated systems -Heat transfer at high temperatures -Opacifiers -Thermal transport Vs. humidity

Experimental Techniques

Neutrons:

Small Angle Scattering (SANS), Diffraction, Reflectivity, Inelastic Neutron Scattering (INS), Quasi Elastic Neutron Scattering (QENS), Spin-echo (NSE)

X-Rays

: Small Angle Scattering (SAXS), Micro-focus SAXS, Diffraction (XRD), Reflectivity, XPS, EXAFS, XANES, X-ray magnetic circular dichroism (XMCD) Nuclear Magnetic (NMR), MAS-NMR, PFG-NMR, Electron Spin (ESR), Mössbauer, Muon spin rotation / relaxation / resonance (µSR), FT-IR, G-IR, Diffuse reflectance FT-IR (DRIFT), Raman-Spectroscopy Sorption, Permeability, Catalytic activity, Gas volumetric reaction kinetics, Liquid/gas microcalorimetry, Contact angle measurements, GC, GC-MS, HPLC, Frequency Response (FR), Thermogravimetry (TG), Temperature Programmed Desorption, Reduction, Oxidation (TPD, TPR, TPO), Impedance spectroscopy SEM, TEM/HREM, AFM, Interference and Con-focal Microscopy Magnetic measurements (comprising susceptibility), Thermal transport, Electrical conductivity

Modelling Tools

Network models Percolation theory Process Analysis Density Functional Theory (DFT) Monte Carlo (MC) Digital Reconstruction techniques Molecular dynamics (MD) Molecular Mechanics (MM) Docking/packing Band structure calculations (FLAPW, KKR-CPA)

INTEGRATION APPROACH

1st level

of integration according to FP6 requirements

2nd level

- supertool operation

3rd level

- integration with venture capital

4td level

- integration with other networks

List of participants

Coordinator :

Dr. Nick K. Kanellopoulos

Coordinator organisation:

National Center for Scientific Research "Demokritos" Core Groups:

1.

Dr. N. Kanellopoulos

- National Center for Scientific Research "Demokritos",

NCSRD

(HL) 2.

Dr. D. Jones

– Centre Nationale de la Researche Scientifique,

CNRS

(F) 3.

Prof. Dr. Jörg Kärger

- University of Leipzig, Department of Interface Physics,

UNILEP

(D) 4.

Prof. E.F. Vansant

- University of Antwerp,

UA-UIA

(B) 5.

Prof. N. Quirke

- Imperial College,

Imperial

(UK) 6.

Prof. Dr.-Ing. J. Weitkamp

- Universität Stuttgart, Institut für Technische Chemie I,

USTUTT-ITC

(D) 7.

Prof. B.C. Hauback

- Institute for Energy and Technology,

IFE

(NO) 8.

Prof. F. Kapteijn

– TU Delft (DelftChemTech),

TU Delft

(NL) 9.

Prof. F. Rodriguez-Reinoso

- Universidad de Alicante- Departamento de Quimica Inorgánica,

UALI

(E) 10.

Prof. A.A.G. Tomlinson

- Istituto di Chimica dei Materiali, Consiglio Nazionale delle Ricerch,

CNR

(I) 11.

Dr. E. Kikkinides

- Chemical Process Engineering Research Institute-Centre for Research and Technology,

CERTH

(HL) 12.

Prof. J. Caro

- University of Hannover-Institut fuer Physikalische Chemie & Elektrochemie,

UNIHAN

(D) 13.

Prof. Michael StØker

– SINTEF,

SINTEF

(NO) 14.

Dr. H. C.W.M. Buijs

- TNO Industrial Tech. Materials Technology Division,

TNO

(NL)

List of participants

Satellite Groups:

1.

Dr. Fernando Albertos -

REPSOL -YPF SA,

REPSOL YPF (E)

2.

Dr. Catrine Laroche -

Institute Français du Petrol,

IFP

(F 3.

Dr. Roberto Millini

- ENI Tecnologie,

ET

(I) 4.

Ing. Francesco Bonino -

Centro Ricerche FIAT,

CRF

(I) 5.

Mr J-P. Joulin

- Céramiques Techniques et Industrielles,

CTI

(F) 6.

Dr. Stefan Brandt-

GRACE GmbH & Co KG,

GRACE

(D) 7.

Mrs R. Marquinez – Porres

- FUND.LEIA CDT,

LEIA

(E) 8.

Dr. N. Theophilou -

Silver & Baryte,

S&B

(HL) 9.

Mr. Herman Goverse

– ECO Ceramics BV,

ECO

(NL) 10.

Mr. F.M. Velterop

- Pervatech BV,

Pervatech

(

NL)

11.

Prof. V. Kaucic

– National Institute of Chemistry Slovenia,

NICS

(SL) 12.

Prof. J. Papp

- Central Research Institute for Chemistry, Hungark Academy of Sciences,

CRC IC HAS

(HU) 13.

Prof. A. Jarzebski

- Polish Academy of sciences, Institute of Chemical Engineering,

IICh PAN

(PO)

14. Prof. M. Caldararu – Institute of Physical Chemistry “I.G. Murgulescu” Romanian Academy, IPCRA (RO)

15.

Prof. N. Seaton

- University of Edinburgh Division of Engineering,

UEdin

(UK) 16.

Prof. D. Enke -

Martin-Luther-Uni. Halle-Wittenberg,

MLU-Halle

(D) 17.

Dr. R. Michaelsen

- Berlin Neutron Scattering Center, Hahn-Meitner Institute,

HMI

(D) 18.

Prof. Fricke

- Würzburg University, Inst. Physics,

UNI Wurzburg

(D) 19.

Prof. P. Adler -

Institut de Physique du Globe de Paris,

IPGP

(F) 20.

Prof. V. Milisic -

Université de Bordeaux-Lab. de Génie des Procédés Faculté d' Oenologie,

LPG

(F) 21.

Dr. Gary Brian Hix -

De Montfort University,

DMU

(UK) 22.

Prof. Jesus Santamaria

, Institute of Nanoscience Aragon -

INA

(E) 23.

Prof. K. Richter

, Gesellschaft zur Förderung der naturwissenschaftlich-technischen Forschung in Berlin-Adlershof e.V.,

GNF

(D) 24.

Mr. F. Llabres -Luengo

–SENER,

SENER (E)

25.

Dr. D. Kehr

- Schunk Kohlenstofftechnik GmbH, SKT

(D)

Institute of Physical Chemistry “I.G.Murgulescu” of Romanian Academy Laboratory of Chemical Kinetics

Catalytic oxidation & Catalytic gas sensors

 Correlation structure-activity in heterogeneous (gas-solid) selective oxidation, oxidative dehydrogenation and ammoxidation of hydrocarbons (particularly C 3 , C 4 );  Catalysts for combustion of C 1 -C 4 hydrocarbons and other volatile organic compounds (VOC) for environmental purposes;  Surface dynamics under the influence of operating conditions of catalysts powders or other materials (including ceramics) by AC

in situ

(“operando”) electrical conductivity measurements (differential step technique DST) -

A special cell consisting of two coaxial cylindrical electrodes with powder as the dielectric coupled with monitoring on- line the exit gases

;  Evaluation of mobility / thermal stability on the surface of weakly adsorbed molecules by studies on variation of the apparent dielectric constant of powders in operando conditions (by

in situ

capacitance measurements) under adsorption/desorption of various gases); M. Caldararu et al, Sensors and Actuators B 30 (1996) 35; M. Caldararu et al, Appl.Surf.Sci. 181 (2001) 255; M. Caldararu et al, Appl. Surf. Sci. 207 (2003) 318; M. Caldararu et al, Appl.Surf.Sci. 211 (2003) 156;

Institute of Physical Chemistry “I.G.Murgulescu” of Romanian Academy Laboratory of Chemical Kinetics

Catalyts:

   Bulk (single or multicomponet) oxides; Supported oxides; Oxide supported noble metal (Pt, Pd) catalysts; Oxide supports: g -Al 2 O 3 , TiO 2 , SiO 2 , ZrO 2 , CeO 2 and CeO 2 -ZrO 2

Information to be obtained: Thermal stability on porous surfaces of weakly adsorbed species (e.g. water, hydrocarbons) Surface reduction/oxidation Surface hydration/dehydration Involvement of proton conduction Relations with surface acidity Examples:

 Studying the effects of residual or atmospheric moisture in facilitating/screening adsorption of some reactive gases;  Gas sensing (SnO 2 , TiO 2 based compounds).