Diapositiva 1

Download Report

Transcript Diapositiva 1

RESPONSIBLE
Governing Board
Lab Responsible
Prof. Ing Umberto Desideri
Budget Responsible
Project RESPONSIBLE
BUDEGET RESPONSIBLE
Quality RESPONSIBLE
Ing. Stefania Proietti
Dott.ssa Vanessa Rossi
Ing. Antonio Biagetti
Research Team
Advisory Board
Ing. Matteo Dozzini
Ing. Angelo Moreno (ENEA)
Ing. Giovanni Cinti
Ing. Roberto Bove (ALSTOM)
Dr. Gabriele Discepoli
Ing. Daniele Penchini
Ing. Elena Sisani
CERSE
ISOS
FISR
SCEI
EFESO
CDS
SOFC Stack
SOFC Stack
‣ Research activities
SOFC Cell
SOFC/MCFC power production
Fuel processing
Clean-up
Cell & Stack Performances
System integration
CO2 concentration
Pollutant effects assessment
MCFC Cell
‣ Research projects
Experimental tests
Modeling
Projecting
MCFC Stack
Desulphurizer
Gas lines
(Air, CO2, CO, H2, N2, CH4)
Gas analysis unit
TCD detector
GC with FPD detector
(sulphur compounds)
Environmentally Friendly Energy From Solid Oxide fuel Cell
TEST DEFINITION
FC TEST NET
SP PROCEDURES
TEST EFESO
ACU PROCEDURES
MODEL DEVELOPMENT
=
4.10
 H,reac = -110.38 kW
8
1.090
xSF =
3.00 kg/kg
Treac = 600.00 °C
p reac =
1.00 bar
H,trans =
83.39 kW
Tsec = -221.59 °C
1.070
925.28
-2048.78
1.090
0.272
-9965.82
1.100
3
5
0.131
2
-12266.07
A
16
C
P=
-1.28 kW
i = 70 %
m,el = 90 %
0.009
28
1.120
2
P = -18.55 kW
i = 62.5 %
m,el = 84.57 %
7
0.027
600.00
p
21
15
5
613.86
-7591.63
624.13 K
103.69 K
0.00 kW
16.0388 kW
T = Temperature [°C]
h = Enthalpy [kJ/kg]
T low = 360.51 K
T high =
59.91 K
 Ex =
33.15 kW
 H,trans = 100.089 kW
4
1.060
20
P=
-0.45 kW
i = 70 %
m,el = 90 %
TEST ACTIVITY
p =
1.017
-4467.65
1.050
-2414.55
-15908.41
17
0.05 bar
23
15.00
19
0.027
1.040
-2782.75
375.51
H =
p =
1.500
-15908.38
Afc = Cell area [m ]
0.272
0.30 bar
200.34 kW
31.36
-82.33
0.235
439.91 kW
40.92 kW
9
10
 E =
xSF = Steam-fuel ratio [kg/kg]
10
P=
-5.09 kW
i = 62.5 %
m,el = 76.36 %
 E,in =
Treac = Reaction temperature [°C]
preac = Reaction pressure [bar]
1.130
866.11
819.81
0.825
0.00 kW
H,trans = Transmitted heat flow [kW]
T low = Low end temp. diff. [K]
T high = High end temp. diff. [K ]
E = Energy loss [kW]
13
ex = Exergy loss [kW]
E =
E,in =
23.25 kW
0.00 kW
27
11
437.15 kW
uO = Oxidant utilisation [% ]
Tfc = Fuelcell temperature [°C]
Pel,AC = AC Power [kW]
DC/AC = DC/AC conversion eff. [%]
7
21
 E,in =
 E =
uF = Fuel utilisation [% ]
232.07 K
353.56 K
Pel,DC = DC Power [kW]
0.272
1.130
15.00
0.027
2
Rfc = Cell resistance [ m ]
T low =
T high =
9
-3519.74
40.00
0.272
24
18
Vfc = Cell voltage [V]
2
i fc = Current density [A/m ]
8
925.28
-2048.78
1.020
12
25
0.009
1.070
15
22
0.272
15.00
1.061
2
26
1.200
750.00
H
18
H
659.91
0.009
1.130
685.26
22
14
17
H
35.77
23
19
STACK
SINGLE CELL
4
0.272
1.200
-4423.29
SHORT STACK
3
703.69
-2355.55
m = Mass flow [kg/s]
24
14
T
h m
p = Pressure [bar]
0.037
13
T low =
T high =
E =
H,trans =
2
2
6
1
600.00
290.00 m
Rfc = 7e-05  m
850.00
-9965.82
20
1.170
Vfc = 0.7938 V
2
i fc = 1200.00 A/m
uF =
70.00 %
uO =
18.56 %
Tfc = 800.00 °C
Pel,DC = 276.25 kW
Pel,AC = 265.20 kW
DC/AC =
96.00 %
1
1.170
-2672.30
0.206
11
12
16
0.065
850.00
Afc =
0.065
850.00
29
1.090
800.80
850.00
-9965.82
1.000
15.00
-98.85
0.235
 = Airfactor [-]
H,reac = Reaction heat [kW]
E,in = Energy input [kW]
P = Power [kW]
i = Isentropic efficiency [% ]
m,e = Mechanical*Electrical eff. [% ]
H = Heat output [kW]
p = Pressure drop [bar]
T sec = Temperature rise (secondary) [°C]
Environmentally Friendly Energy From Solid Oxide fuel Cell
UPGRADE FClab
Develop and analysis of system model:
Sofc
Mcfc
Reformer
Balnce Of Plant
Anodic/Cathodic Recirculation
=
4.10
 H,reac = -110.38 kW
8
1.090
-9965.82
xSF =
Treac =
p reac =
H,trans =
Tsec =
3.00 kg/kg
600.00 °C
1.00 bar
83.39 kW
-221.59 °C
1.070
925.28
-2048.78
1.090
0.272
-9965.82
1.100
3
12
5
0.131
2
-12266.07
A
16
C
P=
-1.28 kW
i = 70 %
m,el = 90 %
0.009
28
1.120
2
P = -18.55 kW
i = 62.5 %
m,el = 84.57 %
7
0.027
600.00
p
21
15
5
613.86
-7591.63
T = Temperature [°C]
h = Enthalpy [kJ/kg]
1.060
3
703.69
-2355.55
4
H
35.77
20
23
19
P=
-0.45 kW
i = 70 %
m,el = 90 %
p =
1.017
-4467.65
REFORMER PERFORMANCE
1.050
-2414.55
-15908.41
17
0.05 bar
23
15.00
19
15
0.027
-2048.78
1.040
-2782.75
375.51
-3519.74
H =
p =
1.500
-15908.38
40.00
0.272
0.30 bar
200.34 kW
31.36
-82.33
0.235
xSF = Steam-fuel ratio [kg/kg]
10
P=
-5.09 kW
i = 62.5 %
m,el = 76.36 %
439.91 kW
40.92 kW
9
10
 E =
 E,in =
Treac = Reaction temperature [°C]
preac = Reaction pressure [bar]
1.130
866.11
819.81
0.825
0.00 kW
T low = Low end temp. diff. [K]
E = Energy loss [kW]
ex = Exergy loss [kW]
E =
E,in =
23.25 kW
0.00 kW
27
11
437.15 kW
H,trans = Transmitted heat flow [kW]
T high = High end temp. diff. [K ]
13
21
 E,in =
 E =
uO = Oxidant utilisation [% ]
Tfc = Fuelcell temperature [°C]
Pel,AC = AC Power [kW]
DC/AC = DC/AC conversion eff. [%]
7
15.00
0.027
2
uF = Fuel utilisation [% ]
232.07 K
353.56 K
Pel,DC = DC Power [kW]
0.272
1.130
0.272
24
18
Afc = Cell area [m ]
Rfc = Cell resistance [ m ]
T low =
T high =
9
1.020
12
Vfc = Cell voltage [V]
2
i fc = Current density [A/m ]
8
925.28
22
25
0.009
1.070
0.272
15.00
1.061
2
26
1.200
750.00
H
18
H
659.91
0.009
1.130
685.26
22
14
17
0.272
1.200
-4423.29
m = Mass flow [kg/s]
24
14
T low = 360.51 K
T high =
59.91 K
 Ex =
33.15 kW
 H,trans = 100.089 kW
4
T
h m
p = Pressure [bar]
0.037
13
T low = 624.13 K
T high = 103.69 K
E =
0.00 kW
H,trans = 16.0388 kW
2
2
6
1
600.00
290.00 m
Rfc = 7e-05  m
850.00
-9965.82
20
1.170
Vfc = 0.7938 V
2
i fc = 1200.00 A/m
uF =
70.00 %
uO =
18.56 %
Tfc = 800.00 °C
Pel,DC = 276.25 kW
Pel,AC = 265.20 kW
DC/AC =
96.00 %
1
1.170
-2672.30
0.206
11
16
0.065
850.00
Afc =
0.065
850.00
29
1.090
800.80
850.00
1.000
15.00
-98.85
0.235
 = Airfactor [-]
H,reac = Reaction heat [kW]
E,in = Energy input [kW]
P = Power [kW]
i = Isentropic efficiency [% ]
m,e = Mechanical*Electrical eff. [% ]
H = Heat output [kW]
p = Pressure drop [bar]
T sec = Temperature rise (secondary) [°C]
Single CEll Investigation
TEST STANDARDIZATION
Acceptance
1,20
25,00
P1 Voltage (V)
P12 Voltage (V)
P1 Power (W)
1,00
20,00
P12 Power (W)
15,00
0,60
10,00
Power (W)
Voltage (V)
0,80
0,40
5,00
0,20
0,00
0,00
0,00
100,00
200,00
300,00
400,00
500,00
600,00
700,00
H2 = 48 Nl/h
Air = 113 Nl/h
Tcell = 792 °C
H2O = 4%
J mA/cm2
ASR = 0,603 Ω/cm2
OCV = 1061,205333 mV
Investigation on Solid Oxide Fuel Cell Stack
TEST DEFINITION
Uf
Cf
Hf
CO2f
Df
Uox
Dox
H
M
LFG
BIO
0,4-0,9
0
0,05-0,10
0
0
0.6
0
0,4-0,9
0,2
0,168
0,044
0
0.6
0
0,4-0,9
0,298
0,208
0,096
0,0063
0.6
0
0,4-0,9
0,274
0,199
0,0815
0,0028
0.6
0
280 W
TEST FACILITY
Average compositions from literature
TEST DEFINITION
Complete Reforming
T=800°C, P=1atm , (S/C=2,5)
Fuel factor
characterization
LAYOUT TEST FACILITY
for J = 0 ÷ 150 mA/cm2
Clean up Development System
Characterization of sorbent materials for desulphurization:
breakthrough testing under ambient conditions to determine
sulfur sorption capacity
EXPERIMENTAL
• feedstok: N2+H2S; natural gas
• sulphur concentration: 10-20 ppm (H2S; TBM)
• flow: 24 nl/h
TEST RIG
C out (ppm)
Activated carbon RB1: breakthrough curve
14
12
10
8
6
4
2
0
0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time (h)
• fixed bed flow reactor
• using of Teflon to prevent sulfur compounds from being
adsorbed on the working surfaces of the system
• sorbent materials: activated carbons, zeolites, activated
alumina and new acquisition materials, like perlite and
vermiculite.
‣ Partners
Aim of this projects, lead by Ansaldo Fuel Cells, ENEA
and University of Perugia, is the development and
optimization of new processes and technologies for
cogeneration systems fuel cell based, with competitive
costs, performance and endurance, characterized by:
‣ ‘energy saving’
‣ Low poisoning emissions
‣ High efficiency
‣ Alternative fuels (from sludge, waste, biomass,
depuration plant, etc.)
‣ University of Perugia role
The main target of the Fuel Cell Laboratory is to study
‣ the influence of poisoning components of such a gas
(like biogas, exhaust gas from industrial plant), in
particular sulphur compound, and produce data to
better understand the poisoning mechanisms on the
fuel cells.
‣ the regeneration methods
CO2 Capture and Storage:
CHP System
difficult, expensive but may be used in
large new and existing power plants,
guaranteeing security of large scale
energy production
Clean - up
2
5
3
5
1
6
3
1
A
11
7
C
2
4
6
Concentrated carbon
4
7
11
8
8
INNOVATIVE FUELS:
•Biogas
•Landfill gas
•Syngas (gasification and pyrolisys)
•Ammonia
•Methanol
CLEAN UP OF POLLUTANT ELEMENTS
• Organic sulphur compounds
(Mercaptans, THT)
• Siloxanes
• Halides
CO2 SEPARATIONS WITH MCFC:
• effect of pollutant NOx, SOx in the cathod side
• study of MCFC feeding with real gas composition of ICE cogenerator
STEAM METHANE REFORMING:
• effect of pollutant NOx, SOx in the cathod side
• study of MCFC feeding with real gas composition of ICE cogenerator
UNI EN ISO 17025: 2005
EUROPEAN FUEL CELL
CONFERENCE 2007-2009-2011
LOTUS
FC02 CAPGEN
JTI
7 FP
MCFC INNOVA
RE-DEOS
H2FC
RESEARCH FOR SME
INFRASTUTTURE RICERCA
MIUR
RESEARCH EXCHANGE ITALY-KOREA
Development of a Clean up system of
Natural Gas for CHP systems based on
SOFC for residential application (1-2,5 kW)
PRIN 2009