Transcript Slide 1
Electron microscopy analysis of nmsized particles and segregations Frank Krumeich and Reinhard Nesper ETH Zurich, Laboratory of Inorganic Chemistry Electron microscopy: valuable tools for the characterization of nanomaterials Scanning transmission electron microscopy STEM - HAADF-STEM - Combination with spectroscopic methods Comparison of methods [email protected] www.microscopy.ethz.ch Electron Microscopy Methods for the Characterization of Nanomaterials (Example: Vanadium Oxide Nanotubes) SEM: characterization of tubular morphology EELS: composition V map C map Cross-sections of VOx nanotubes: TEM and elemental maps obtained by electron spectroscopic imaging TEM: characterization of the wall structure Scanning Transmission Electron Microscopy (STEM) STEM detectors HAADF High Angle Annular Dark Field detector (Θ > 3°) BF Bright Field detector ADF Annular Dark Field detector (Θ = 0.5 - 3°) Scattering of Electrons at an Atom Strong Coulomb interaction of an electron with the nucleus scattering into high angles or even backwards High angle annular dark field detector (HAADF-STEM) atomic-number (Z) contrast: dσ e 2 Z d HAADF-STEM of Small Metal Particles 50 nm 10 nm Au particles (bright contrast) on titania (Z contrast) HAADF-STEM and EDXS: Point Analyses Al C O Pt Pd Cu Pt Pt Al C O Pd/Pt particles on alumina Pt Pd Cu Pt Pt HAADF-STEM and EDXS matrix segregation WO3 segregations in the oxidation product of Nb4W13O47 (Tox=1000°C) Krumeich, Nesper, J. Solid State Chem. 179 (2006) 1658 HAADF-STEM: Elemental Distribution ca. 80% Nb 100% W Single-crystal X-ray structure of Nb7W10O47 P21212 a=12.26, b=36.63, c=3.95 Å (Krumeich, Wörle, Hussain, J. Solid State Chem. 149 (2000) 428) HAADF-STEM of Nb4W13O49 High-Resolution Electron Microscopy HRTEM WO3 segregations in a bronze-type Nb-W oxide HAADF-STEM 2 nm Comparison: HRTEM ↔ HAADF-STEM HRTEM HAADF-STEM basics interference of coherently scattered electron waves incoherent scattering recording - time parallel 0.5 – 2 s serial 5-20 s (→ problems) cathode LaB6 (or FEG) FEG resolution ca. 2 Å ca. 2 Å obtainable information atomic positions (and elemental distribution) atomic positions and elemental distribution image interpretation comparison with simulations Scherzer defocus: atom columns dark direct atom columns always bright; intensity ~Z2 Analytical Electron Microscopy Benefits • Qualitative and quantitative information about the composition: EDXS, EELS • Bonding, coordination, interatomic distances: Fine structure in EELS (ELNES, EXEFS) • Spatially resolved information about composition: 1. STEM + EDXS and/or EELS 2. ESI Limitations • Electron-matter interactions are mostly elastic high electron doses necessary • Long measuring times high sample stability and absence of drift • Ionization edges occur at different energies and are of different shape not all methods are equally suitable for all elements Transmission Electron Microscope Tecnai F30 Uacc= 300kV, field emission cathode (FEG) SuperTwin lens: Cs = 1.15 mm, point resolution d < 0.2 nm Equipment: post-column imaging filter, STEM, energy-dispersive X-ray spectrometer Methods: TEM, HRTEM, STEM, ED, EDXS, EELS, ESI, EFTEM Post-column filter Acknowledgements EMEZ: Electron Microscopy Center, ETH Hönggerberg www.emez.ethz.ch [email protected] www.microscopy.ethz.ch