BAHAN TERMAJU & KOMPOSIT (EBB 324/4)

Download Report

Transcript BAHAN TERMAJU & KOMPOSIT (EBB 324/4)

• • • • • • • •

Course Code : Course Title : Course Unit : Type of Course : Name of academics

EBB 324 Advanced Materials and Composites 4 Core :Dr. Mariatti Jaafar Dr. Hazizan Md Akil Dr. Zuhailawati Hussin (6) Contribution of Assessment: 70% final examination & 30% course work (15% Test and 15% Quiz/PBL)

Course Objectives/Course Outcomes (CO)

• • • • 1. To classify different types of advanced composite materials 2. To select and justify a suitable advanced composite materials for specific applications 3. To propose a suitable fabrication technique of advanced composite materials for specific applications 4. To apply suitable theory to estimate the properties of the advanced composite materials

EBB 324 (Advanced Materials & Composites) Topic Contents Introduction to composite materials

(Definition and classification of composite materials, natural composites, the benefit of composites)

Introduction to composite materials

(Types of matrix (natural and synthetic), types of reinforcement (natural and synthetic), factors which determine properties)

Reinforcement-matrix interface

(Wettability, Interfacial bonding, methods to measure bond strength)

Polymer matrix composites

(Introduction, types of polymer matrices (thermoplastics, thermoset & rubber), processing of PMC- Hand lay-up, spray-up moulding methods (match die moulding, bag moulding method, vacuum bagging, pressure filament winding) bagging, RTM), pultrusion,

Polymer matrix composites

(Some commercial PMCs- epoxy and polyester matrix composites, PEEK matrix composites, rubber matrix composites, etc.)

References

• • • • R.F. Gibson, Principles of Composite Materials Mechanics, McGraw Hill, Inc, 1994.

F.L. Matthews, R.D. Rawlings, Composite Materials; Engineering & Science, Chapman & Hall, 1994.

R.P Sheldon, Composite Polymeric Materials, Applied Science Publisher, 1982 S. C. Sharma, Composite Materials, Narosa Publishing House, 2000

What is Composites?

• • • • • Combination of 2 or more materials Each of the materials must exist more than 5% Presence of interphase The properties shown by the composite materials are differed from the initial materials Can be produced by various processing techniques

Classifications of composites

• • • Matrix; PMC, MMC, CMC Function; electrical & structure Geometry of reinforcements; fiber composites & particulate composites

Classification based on Geometry of reinforcement Composite materials Whiskers Flake Fiber composites Particulate composites Random orientation Uni directional Two directional Random orientation Uni -directional

Examples of composites

a) Particulate & random b) Discontinuous fibers & unidirectional c) Discontinuous fibers & random d) Continuous fibers & unidirectional

Classification based on Matrices

Composite materials Matrices Polymer Matrix Composites (PMC) Metal Matrix Composites MMC) Ceramic Matrix Composites (CMC) Thermoset Thermoplastic Rubber

Polymer matrix composites

• Widely used- ease of processing, lightweight & desirable mechanical properties

Metal Matrix Composites (MMC)

• • • • • Generate wide interest in research Not as widely use as PMC Higher strength, stiffness & fracture toughness Can withstand elevated temperature in corrosive environment than PMC Most metal and alloy can be used as matrices

Ceramic Matrix Composites (CMC) • • • Able to withstand high temperature (>1649ºC) & brittle Used in aeronautics, military, etc Carbon and glass are common matrix used in CMC

Natural Composites

• Wood – Consists of cellulose, hemiselulose & lignin – Cellulose- the strongest component, 65% unidirectional alignment – Lignin behave as adhesive, tighten the wood components

Natural Composites

• Bone – Example; hydroxyapatite reinforced collagen composites

• Pole (Construction Industry) Traditional wood →steel→concrete→pol ymer composite (made of layers of glass fabric + resins) • Advantages of Polymer Composites 1) won't rust, or corrode 2)require no preservatives 3) light-weight, lighter than aluminum, wood, steel or concrete. 4) the lowest possible total installed cost

Modern vaulting poles

H ere is an example of a vaulting pole made from glass fibre reinforced polymer (GFRP) composites and carbon fibre reinforced polymer (CFRP) composites

Benefits of Composites???

• • Improved properties (thermal, mechanical, electrical, etc) Many end-applications

Bahan pembentuk komposit

• Matriks • Bahan tetulang/penguat (Reinforcement) • Antaramuka/antarafasa

Matriks: Fungsi

• • Mengikat bahan tetulang Memindah dan mengagihkan beban kenaan kepada tetulang, ttp pemindahan beban bergantung kepada ikatan antaramuka

Matriks

• • Needs to withstand temperature variations Offer weight advantages, ease of handling

Bahan tetulang: Fungsi bergantung kepada matriks • • • matriks logam: utk meningkatkan kekerasan dan ketahanan rayapan suhu tinggi matriks polimer: utk memperbaiki sifat kekakuan, kekuatan dan keliatan matriks seramik: utk memperbaiki keliatan

• • • • Bahan tetulang wujud dalam bentuk: • Gentian selanjar – Gentian organik- cthnya Kevlar, polietilena – Gentian tak organik- cthnya kaca, alumina, karbon – Gentian asli- cthnya asbestos, jut, sutera Gentian pendek Hablur sesunggut (whiskers) Partikel Dawai

Antarafasa: Fungsi

• Memindahkan tegasan daripada matriks kepada bahan tetulang Sometimes surface treatment is carried out to achieve the required bonding to the matrix

Types of matrix (natural and synthetic) • • Natural – Silica sand, limestone (CaCO3), talc, etc – Starch, epoxy based on soy bean, chitosan, etc Synthetic – Fumed silica, fused silica, glass, etc – Epoxy, polyester, PP, PE, etc

Types of reinforcement (natural and synthetic) • • Natural – Silica sand, limestone (CaCO3), talc, etc – Natural fibers, wood, etc Synthetic – Glass fiber, boron fibers, etc – Fumed silica, fused silica, glass, etc

• • • • • Faktor-faktor yang mengawal sifat sifat komposit • Komposisi komponen -Komposisi setiap komponen (matriks dan tetulang) mempengaruhi terus sifat2 akhir komposit. X c = X f V f + X m (1 - V f ) – Hukum Pencampuran/Rule of Mixture X c = Sifat komposit X f = Sifat gentian X m = Sifat matriks

Rongga

• • • ruang udara yang terkumpul atau terperangkap dalam komposit dalam komposit, rongga wujud dalam matriks, antaramuka dan antara gentian-gentian kehadiran rongga dalam struktur komposit menyebabkan wujudnya titik pemusatan tegasan- menjejaskan sifat-sifat akhir komposit

• • • ruang udara yang terkumpul atau terperangkap dalam komposit dalam komposit, rongga wujud dalam matriks, antaramuka dan antara gentian-gentian kehadiran rongga dalam struktur komposit menyebabkan wujudnya titik pemusatan tegasan- menjejaskan sifat-sifat akhir komposit

Bentuk, saiz, orientasi dan taburan gentian • • • • Bentuk gentian (partikel- bulat, whiskers, bersudut, etc) Saiz gentian ( pendek, panjang, selanjar) Orientasi gentian (satu arah, dua arah, pelbagai arah)- mempengaruhi sifat isotropi dan tak isotropi Taburan gentian (homogenus/uniform, takhomogenus)

Examples of different composite geometrical arrangements

Teknik dan parameter pemprosesan • • mempengaruhi pemilihan bahan mentah yang sesuai, bentuk akhir komposit, kandungan rongga dll mempengaruhi struktur dan morfologi sesuatu komposit

Antaramuka & Antarafasa (Interfaces & Interphases) • Figure 1.2

Apabila Antarafasa wujud, terdapat 2 antaramuka yang hadir