Transcript Document
School on Digital and Multimedia Communications Using Terrestrial and Satellite Radio Links The Abdus Salam International Centre for Theoretical Physics ICTP Trieste (Italy) 12 February – 2 March 2001 Antenna Fundamentals (2) R. Struzak [email protected] 15 Feb 2001 Property of R. Struzak 1 • Note: These materials may be used for study, research, and education in not-for-profit applications. If you link to or cite these materials, please credit the author, Ryszard Struzak. These materials may not be published, copied to or issued from another Web server without the author's express permission. Copyright © 2001 Ryszard Struzak. All commercial rights are reserved. If you have comments or suggestions, please contact the author at [email protected]. 15 Feb 2001 Property of R. Struzak 2 Summary Slide • • • • • Power Transfer EM Field Linear Antenna Radiation Resistance Radiation Pattern 15 Feb 2001 Property of R. Struzak 3 Power Transfer 15 Feb 2001 Property of R. Struzak 4 Antenna Effective Area • Measure of the effective absorption area presented by an antenna to an incident plane wave. • Depends on the antenna gain and wavelength 2 Ae G( , ) [m ] 4 2 Aperture efficiency: a = Ae / A A: physical area of antenna’s aperture, square meters 15 Feb 2001 Property of R. Struzak 5 Power Transfer in Free Space PR PFD Ae GT PT 2 4r GR 4 2 PT GT GR 4r 15 Feb 2001 2 • : wavelength [m] • PR: power available at the receiving antenna • PT: power delivered to the transmitting antenna • GR: gain of the transmitting antenna in the direction of the receiving antenna • GT: gain of the receiving antenna in the direction of the transmitting antenna • Matched polarizations Property of R. Struzak 6 Power Transfer: Example 1 • What is the power received from GEO satellite (=0.1m, PT =440 W, GT=1000) at Trieste (distance ~38'000 km, GR=1)? • Free space 15 Feb 2001 PR PT GT GR 4r 2 0.1 2 3 4.4 10 10 6 4 38 10 4.4 105 10 2 4.4 1018 1 1015 W 150 dB(W) Property of R. Struzak 7 2 Power Transfer: Example 2 • What is the power from a transmitter (=0.1m, PT=440 mW, GT=1) received at distance of 3.8 cm (GR=1)? • Free space 15 Feb 2001 PR PT GT GR 4r 2 0.1 4.4 101 1 1 2 4 3 . 8 10 4.4 103 4.4 108 105 W 50 dB(W) Property of R. Struzak 8 2 EM Field 15 Feb 2001 Property of R. Struzak 9 EM Field of Linear Current Element Er z E OP dz r E y E Er E E H H r H H 2 E Er E E H H r H H 2 2 2 2 2 x dz: electric current element (short electrical dipole) 15 Feb 2001 Property of R. Struzak 10 EM Field of Current Element E jAFF jQ C (sin )e j r Er 2 AQ C (cos )e jr jA FF Q (sin )e jr H 120 E H r H 0 2 A 30 2 Idz 1 FF r 1 Q ( r ) 2 1 C ( r )3 Idz: “moment of linear current element” Johnson & Jasik: Antenna Engineering Handbook; T. Dvorak: Basics of Radiation Measurements, EMC Zurich 1991; J. Dunlop, D. Smith Telecommunications Engineering1995, p. 216 15 Feb 2001 Property of R. Struzak 11 Field Components 1000 Relative fieldstrength C 100 Q 10 FF 1 FF 0.1 Q 0.01 C 0.001 0.1 1 10 Relative distance 15 Feb 2001 Property of R. Struzak 12 Field Impedance 100 Short dipole Z / 377 10 1 0.1 Small loop 0.01 0.01 0.1 1 10 Distance / (lambda/ 2Pi) 15 Feb 2001 Property of R. Struzak 100 Field impedance Z = E/H depends on the antenna type and on distance 13 Far-Field, Near-Field • Near-field region: – – • Angular distribution of energy depends on distance from the antenna; Reactive field components dominate (L, C) Far-field region: – – 15 Feb 2001 Angular distribution of energy is independent on distance; Radiating field component dominates (R) Property of R. Struzak 14 EM Field: Elementary Current Loop H 120BFF jQ C (sin )e jr H r 2 BQ C (cos )e jr E BFF Q (sin )e jr 3dm B 4 H Er E 0 2 dm I LoopArea dm: “magnetic dipole moment” 15 Feb 2001 Property of R. Struzak 15 Linear Antenna 15 Feb 2001 Property of R. Struzak 16 Arbitrary Linear Antenna 60 sin jr ( z ) E j I ( z ) dze r l 2 l 2 • I(z): antenna current • r: distance 15 Feb 2001 Property of R. Struzak 17 EM Field of Linear Antennas E E1 E2 E3 ... H H1 H 2 H 3 ... O 15 Feb 2001 • Summation of vector components E (or H) produced by every antenna element • In the far-field region, the vector components are parallel to each other Property of R. Struzak 18 Very Short Antenna 60 sin jr ( z ) dze ) z ( I E j l 2 r l 2 60 sin I 0 Le e jr ( z ) E j r 1 Le I0 l 2 I ( z)dz l 2 • r: distance • Le: effective length of antenna 15 Feb 2001 Property of R. Struzak 19 Radiation Resistance 15 Feb 2001 Property of R. Struzak 20 Self- Impedance • Transmitting antenna • Receiving antenna E jX: energy stored in near-field components (E C, H L) Z Rrad: energy radiated Z E = Electromotive force (open-circuit voltage) induced by radio wave Rlos: energy loss 15 Feb 2001 Property of R. Struzak 21 Short Antenna Radiation Resistance • The PFD in the far field is given by the Poynting’s vector = |= E|2/(120) 60I 0 Le E sin r P S • Antenna radiation resistance = = 802(Le/)2 120 dS dS 2r 2 sin d 2 – For other antennas it is much easier to measure the antenna impedance. 15 Feb 2001 E 2 2 2 Le P 60 I 0 sin 3 d 0 2 Le 2 P 80 I 0 Property of R. Struzak 2 22 Integration Surface rsin rd dS = 2r2sin()d r d 15 Feb 2001 Property of R. Struzak 23 Radiation Pattern 15 Feb 2001 Property of R. Struzak 24 Radiation Pattern • Radiation Intensity = Power per steradian radiated in a given direction • Radiation Pattern = Radiation Intensity as function of the azimuth/ elevation angles • Generally 3 dimensional 15 Feb 2001 Property of R. Struzak 25 Short Dipole in Free Space FF 1 H V Relative Gain 1 -1 0 0 90 180 270 360 Degrees Horizontal plane: GVi /GVimax = 1 Vertical plane: GHi /GHimax = |sin | 15 Feb 2001 Property of R. Struzak 26 Elements of Radiation Pattern Main lobe Emax Sidelobes Emax /2 Nulls -180 0 Beamwidth 15 Feb 2001 180 • • • • Gain Beam width Nulls (positions) Side-lobe levels (envelope) • Front-to-back ratio Property of R. Struzak 27 Long Antenna with Sinusoidal Current Distribution I ( z ) I 0 cos z r ( z ) r z cos r(z) z 60 sin E j I 0 e jr cos ze jz cos dz r l 2 l 2 r z cos 60I 0 e jr E j r r: distance 15 Feb 2001 l l cos cos cos 2 2 sin Property of R. Struzak 28 Demonstration (Simulation) LinAntLong This program simulates radiation pattern of linear antenna of arbitrary length. It produces 2D radiation diagrams that show how the positions and magnitudes of radiation lobes, and positions of zeros depend on the antenna length 15 Feb 2001 Property of R. Struzak 29 Half-wave Dipole (l = /2) 60I 0 e E j r jr cos 2 cos sin • Radiation resistance = 73.1 ohm 15 Feb 2001 Property of R. Struzak 30 Half-wave Dipole at Harmonics Odd harmonics L L cos cos cos f ( ) sin L (2n 1) ( / 2) cos(2n 1)( / 2) cos f ( ) sin f ( ) 0 (2n 1)( / 2) cos (2k 1)( / 2) 1.5 Relative Field-strength 3rd harmonic 1 0.5 cos (2k 1) /(2n 1); k 0,1,...n. Fundamental 0 -180 -90 0 90 Elevation angle, degrees 15 Feb 2001 180 f ( ) max (2n 1)( / 2) cos k cos 2k /(2n 1); k 0,1,...(n 1). Property of R. Struzak 31 Antenna Mask (Example 1) Isotropic gain, dB 0 -5 -10 -15 180 120 60 0 -60 -120 -180 -20 • Typical relative directivitymask of receiving antenna (Yagi ant., TV dcm waves) Azimith angle, degrees [CCIR doc. 11/645, 17-Oct 1989) 15 Feb 2001 Property of R. Struzak 32 Antenna Mask (Example 2) 0 0dB RR/1998 APS30 Fig.9 Phi0/2 Relative gain (dB) -10 COPOLAR -3dB -20 Phi -30 -40 CROSSPOLAR -50 0.1 10 1 100 Phi/Phi0 Reference pattern for co-polar and cross-polar components for satellite transmitting antennas in Regions 1 and 3 (Broadcasting ~12 GHz) 15 Feb 2001 Property of R. Struzak 33