Transcript Folie 1
Regularisierung mir Singulären Energien Martin Burger Institut für Numerische und Angewandte Mathematik Westfälische Wilhelms Universität Münster [email protected] 1 Collaborations Stan Osher, Jinjun Xu, Guy Gilboa (UCLA) Lin He (Linz / UCLA) Klaus Frick, Otmar Scherzer (Innsbruck) Carola Schönlieb (Vienna) Don Goldfarb, Wotao Yin (Columbia) Regularisierung mit singulären Energien Göttingen, Januar 2007 2 Introduction Classical regularization schemes for inverse problems and image smoothing are based on Hilbert spaces and quadratic energy functionals Example: Tikhonov regularization for linear operator equations ¸k 1k k ! ¡ k Au f 2 + Lu 2 min 2 2 u Regularisierung mit singulären Energien Göttingen, Januar 2007 3 Introduction These energy functionals are strictly convex and differentiable – standard tools from analysis and computation (Newton methods etc.) can be used Disadvantage: possible oversmoothing, seen from first-order optimality condition Tikhonov yields ¤ ¡ ¤ L Lu = ¸A (Auf ) Hence u is in the range of (L*L)-1A* Regularisierung mit singulären Energien Göttingen, Januar 2007 4 Introduction Classical inverse problem: integral equation of the first kind, regularization in L2 (L = Id), A = Z Z integral operator with kernel k Fredholm u=¸ k(y; x)(¡k(y; z)u(z) + f (z)) dy dz Smoothness of regularized solution is determined by smoothness of kernel For typical convolution kernels like Gaussians, u is analytic ! Regularisierung mit singulären Energien Göttingen, Januar 2007 5 Image Smoothing Classical image smoothing: data in L2 (A = Id), L = gradient¡ (H1-Seminorm) ¢u + ¸u = ¸f On a reasonable domain, standard elliptic regularity implies u 2 H 2 ( ) ,! C( ) Reconstruction contains no edges, blurs the image (with Green kernel) Regularisierung mit singulären Energien Göttingen, Januar 2007 6 Sparse Reconstructions ? `2(Z) Let A be an operator on (basis representation of a Hilbert space operator, wavelet) Penalization by squared norm (L = Id) Optimality condition for components of u ¤ ¡ uk = ¸ (A ( Au + f )) k Decay of components determined by A*. Even if data are generated by sparse signal (finite number of nonzeros), reconstruction is not sparse ! Regularisierung mit singulären Energien Göttingen, Januar 2007 7 Error estimates Error estimates for ill-posed problems can be obtained only under conditions (source ¤ 9w :stronger u=A w conditions) cf. Groetsch, Engl-Hanke-Neubauer, Colton-Kress, Natterer. Engl-Kunisch-Neubauer. Equivalent to u being minimizer of Tikhonov functional with data For many inverse problems unrealistic due to extreme smoothness assumptions Regularisierung mit singulären Energien Göttingen, Januar 2007 8 Error estimates Condition can be weakened¤to 9v : u = f (A A)v cf. Neubauer et al (algebraic), Hohage (logarithmic), Mathe-Pereverzyev (general). Advantage: more realistic conditions Disadvantage: Estimates get worse with f Regularisierung mit singulären Energien Göttingen, Januar 2007 9 Singular Energies `2(Z) P Let A be the identity on rk (uk ) Nonlinear Penalization by Optimality condition for components of u 0 r (uk ) + ¸uk = ¸fk k If rk is smooth and strictly convex, then Taylor expansion 00 yields ¼ 00 r (fk )uk + ¸uk k r (fk )fk + ¸fk k Regularisierung mit singulären Energien Göttingen, Januar 2007 10 Singular Energies Example becomes more interesting for singular (nonsmooth) energy rk (t) = jtj Take Then optimality condition becomes sign (uk ) + ¸uk = ¸fk Regularisierung mit singulären Energien Göttingen, Januar 2007 11 Singular Energies Result is well-known soft-thresholding of 8 et al, Chambolle et al wavelets Donoho ¡ < fk fk + uk = : 0 1 ¸ 1 ¸ fk > 1 ¸ ¡ fk < 1 ¸ else Yields a sparse signal Regularisierung mit singulären Energien Göttingen, Januar 2007 12 Singular Energies ZImage smoothing: try nonlinear energy r(ru) for penalization Optimality condition is nonlinear PDE ¡r ¢ ((rr)(ru)) + ¸u = ¸f If r is strictly convex usual smoothing behaviour If r is not convex problem not well-posed Try singular case at the borderline Regularisierung mit singulären Energien Göttingen, Januar 2007 13 Total Variation Methods r(p) = jpj Simplest choice yields total variation method Total variation methods are popular in imaging (and inverse problems), since - they keep sharp edges eliminate oscillations (noise) - create new nice mathematics - Regularisierung mit singulären Energien Göttingen, Januar 2007 14 ROF Model ROF model for denoising Rudin-Osher Fatemi 89/92, Acar-Vogel 93, Chambolle-Lions 96, Vogel 95/96, Scherzer-Dobson 96, Chavent-Kunisch 98, Meyer 01,… Regularisierung mit singulären Energien Göttingen, Januar 2007 15 ROF Model Optimality condition for ROF denoising p + ¸u = ¸f; 2 j j p @u Dual variable p enters ! Subgradient offconvex ¤ j 8 2 2 functional TV @J(u) = p X v X: ¡ h ¡ i · g J(u) p; v u J(v) Regularisierung mit singulären Energien Göttingen, Januar 2007 16 ROF Model Reconstruction (code by Jinjun Xu) clean noisy ROF Regularisierung mit singulären Energien Göttingen, Januar 2007 17 ROF Model ROF model denoises cartoon images resp. computes the cartoon of an arbitrary image Regularisierung mit singulären Energien Göttingen, Januar 2007 18 Numerical Differentiation with TV From Master Thesis of Markus Bachmayr, 2007 Regularisierung mit singulären Energien Göttingen, Januar 2007 19 Singular energies Methods with singular energies offer great potential, but still have some shortcomings - difficult to analyze and to obtain error estimates systematic errors (clean images not reconstructed perfectly) - computational challenges - some extensions to complicated imaging tasks are not well understood (e.g. inpainting) - Regularisierung mit singulären Energien Göttingen, Januar 2007 20 Singular energies General ¸ k problem Au ¡ f k2 + J(u) ! min 2 u leads to optimality condition ¤ ¤ p + ¸A Au = ¸A f; p 2 @J(u) First of all „dual smoothing“, subgradient p is in the range of A* Regularisierung mit singulären Energien Göttingen, Januar 2007 21 Singular energies For smooth and strictly convex energies, the subdifferential is a singleton f 0 g @J(u) = J (u) Dual smoothing directly results in a primal one ! For singular energies, subdifferentials are not usually multivalued. The consequence is a possibility to break the primal smoothing Regularisierung mit singulären Energien Göttingen, Januar 2007 22 Error Estimation First question for error estimation: estimate difference of u (minimizer of ROF) and f in terms of l Estimate in the L2 norm is standard, but does not yield information about edges Estimate in the BV-norm too ambitious: even arbitrarily small difference in edge location can yield BV-norm of order one ! Regularisierung mit singulären Energien Göttingen, Januar 2007 23 Error Estimation We need a better error measure, stronger than L2, weaker than BV Possible choice: Bregman distance Bregman 67 Real distance for a strictly convex differentiable functional – not symmetric Symmetric version Regularisierung mit singulären Energien Göttingen, Januar 2007 24 Error Estimation Bregman distances reduce to known measures for standard energies 1 k uk 2 J (u) = Example 1: 2 Subgradient = Gradient = u Bregman distance becomes 1k ¡ k DJ (u; v) = u v 2 2 Regularisierung mit singulären Energien Göttingen, Januar 2007 25 Error Estimation Bregman distances reduce Z to known Z measures for standard energies J (u) = u log u u Example 2: Subgradient = Gradient = log u Bregman distance becomes Kullback-Leibler divergence (relative Z Entropy) Z u DJ (u; v) = u log + (v ¡ u) v Regularisierung mit singulären Energien Göttingen, Januar 2007 26 Error Estimation Total variation is neither symmetric nor differentiable Define generalized Bregman distance for each subgradient Symmetric version Kiwiel 97, Chen-Teboulle 97 Regularisierung mit singulären Energien Göttingen, Januar 2007 27 Error Estimation For energies homogeneous of degree one, we have Bregman distance becomes Regularisierung mit singulären Energien Göttingen, Januar 2007 28 Error Estimation Bregman distance for singular energies is not a strict distance, can be zero for In particular dTV is zero for contrast change Resmerita-Scherzer 06 Bregman distance is still not negative (convexity) Bregman distance can provide information about edges Regularisierung mit singulären Energien Göttingen, Januar 2007 29 Error Estimation Let v be piecewise constant with white background and color values on regions Then we obtain subgradients of the form with signed distance function and Regularisierung mit singulären Energien Göttingen, Januar 2007 30 Error Estimation Bregman distances given by In the limit we obtain for being piecewise continuous Regularisierung mit singulären Energien Göttingen, Januar 2007 31 Error Estimation For estimate in terms of l we need smoothness condition on data Optimality condition for ROF Regularisierung mit singulären Energien Göttingen, Januar 2007 32 Error Estimation Subtract q Estimate for Bregman distance, mb-Osher 04 Regularisierung mit singulären Energien Göttingen, Januar 2007 33 Error Estimation In practice we have to deal with noisy data f (perturbation of some exact data g) Estimate for Bregman distance Regularisierung mit singulären Energien Göttingen, Januar 2007 34 Error Estimation Optimal choice of the penalization parameter i.e. of the order of the noise variance Regularisierung mit singulären Energien Göttingen, Januar 2007 35 Error Estimation Direct extension to deconvolution / linear inverse¸problems k ¡ k j j ! 2 Au f 2 + u TV min u2BV under standard source condition mb-Osher 04 Extension: stronger estimates under stronger conditions, Resmerita 05 Nonlinear inverse problems, Resmerita-Scherzer 06 Regularisierung mit singulären Energien Göttingen, Januar 2007 36 Discretization Natural choice: primal discretization with piecewise constant functions on grid Problem 1: Numerical analysis (characterization of discrete subgradients) Problem 2: Discrete problems are the same for any anisotropic version of the total variation Regularisierung mit singulären Energien Göttingen, Januar 2007 37 Discretization In multiple dimensions, nonconvergence of the primal discretization for the isotropic TV (p=2) can be shown Convergence of anisotropic TV (p=1) on rectangular aligned grids Fitzpatrick-Keeling 1997 Regularisierung mit singulären Energien Göttingen, Januar 2007 38 Primal-Dual Discretization Alternative: perform primal-dual discretization for optimality system (variational inequality) with convex set Regularisierung mit singulären Energien Göttingen, Januar 2007 39 Primal-Dual Discretization Discretization Discretized convex set with appropriate elements (piecewise linear in 1D, RaviartThomas in multi-D) Regularisierung mit singulären Energien Göttingen, Januar 2007 40 Primal / Primal-Dual Discretization In 1 D primal, primal-dual, and dual discretization are equivalent Error estimate for Bregman distance by analogous techniques Note that only the natural condition is needed to show Regularisierung mit singulären Energien Göttingen, Januar 2007 41 Primal / Primal-Dual Discretization In multi-D similar estimates, additional work since projection of subgradient is not discrete subgradient. Primal-dual discretization equivalent to discretized dual minimization (Chambolle 03, Kunisch-Hintermüller 04). Can be used for existence of discrete solution, stability of p Mb 07 ? Regularisierung mit singulären Energien Göttingen, Januar 2007 42 Cartesian Grids For most imaging applications Cartesian grids are used. Primal dual discretization can be reinterpreted as a finite difference scheme in this setup. Value of image intensity corresponds to color in a pixel of width h around the grid point. Raviart-Thomas elements on Cartesian grids particularly easy. First component piecewise linear in x, pw constant in y,z, etc. Leads to simple finite difference scheme with staggered grid Regularisierung mit singulären Energien Göttingen, Januar 2007 43 Iterative Refinement & ISS ROF minimization has a systematic error, total variation of the reconstruction is smaller than total variation of clean image. Image features left in residual f-u g, clean f, noisy u, ROF f-u Regularisierung mit singulären Energien Göttingen, Januar 2007 44 Iterative Refinement & ISS Idea: add the residual („noise“) back to the image to pronounce the features decreased to much. Then do ROF again. Iterative procedure Osher-mb-Goldfarb-Xu-Yin 04 Regularisierung mit singulären Energien Göttingen, Januar 2007 45 Iterative Refinement & ISS Improves reconstructions significantly Regularisierung mit singulären Energien Göttingen, Januar 2007 46 Iterative Refinement & ISS Regularisierung mit singulären Energien Göttingen, Januar 2007 47 Iterative Refinement & ISS Simple observation from optimality condition Consequently, iterative refinement equivalent to Bregman iteration Regularisierung mit singulären Energien Göttingen, Januar 2007 48 Iterative Refinement & ISS Choice of parameter l less important, can be kept small (oversmoothing). Regularizing effect comes from appropriate stopping. Quantitative stopping rules available, or „stop when you are happy“ – S.O. Limit l to zero can be studied. Yields gradient flow for the dual variable („inverse scale space“) mb-Gilboa-Osher-Xu 06, mb-Frick-Osher-Scherzer 06 Regularisierung mit singulären Energien Göttingen, Januar 2007 49 Iterative Refinement & ISS Non-quadratic fidelity is possible, some caution needed for L1 fidelity He-mb-Osher 05, mb-Frick-Osher-Scherzer 06 Error estimation in Bregman distance mb-He-Resmerita 07 Regularisierung mit singulären Energien Göttingen, Januar 2007 50 Iterative Refinement MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06 PenalizationTV + Wavelet Regularisierung mit singulären Energien Göttingen, Januar 2007 51 Iterative Refinement MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06 Regularisierung mit singulären Energien Göttingen, Januar 2007 52 Iterative Refinement MRI Data Siemens Magnetom Avanto 1.5 T Scanner He, Chang, Osher, Fang, Speier 06 Regularisierung mit singulären Energien Göttingen, Januar 2007 53 Surface Smoothing Smoothing of surfaces obtained as level sets 3D Ultrasound, Kretz / GE Med. Regularisierung mit singulären Energien Göttingen, Januar 2007 54 Inverse Scale Space Regularisierung mit singulären Energien Göttingen, Januar 2007 55 Iterative Refinement & ISS Application to other regularization techniques, e.g. wavelet thresholding is straightforward Starting from soft shrinkage, iterated refinement yields firm shrinkage, inverse scale space becomes hard shrinkage Osher-Xu 06 Bregman distance natural sparsity measure, source condition just requires sparse signal, number of nonzero components is smoothness measure in error estimates Regularisierung mit singulären Energien Göttingen, Januar 2007 56 Inpainting Difficult to construct total variation techniques for inpainting Original extensions of ROF failed to obtain natural connectivity (see book by Chan, Shen 05) Inpainting region , image f (noisy) given on Try to minimize Regularisierung mit singulären Energien Göttingen, Januar 2007 57 Inpainting Optimality condition will have the form with A being a linear operator defining the norm In particular p = 0 in D ! Regularisierung mit singulären Energien Göttingen, Januar 2007 58 Inpainting Different iterated approach (motivated by Cahn-Hilliard inpainting, Bertozzi et al 05) Minimize in each step First term for damping, second for fidelity (fit to f where given, and to old iterate in the inpainting region), third term for smoothing Regularisierung mit singulären Energien Göttingen, Januar 2007 59 Inpainting Continuous flow for damping parameter to zero Fourth order flow for H-1 norm Stationary solution (existence ?) satisfies Regularisierung mit singulären Energien Göttingen, Januar 2007 60 Inpainting Result: Penguins Regularisierung mit singulären Energien Göttingen, Januar 2007 61 Download and Contact Papers and Talks: www.math.uni-muenster.de/u/burger e-mail: [email protected] Regularisierung mit singulären Energien Göttingen, Januar 2007 62