Biological monomers and polymers (1)

Download Report

Transcript Biological monomers and polymers (1)

1. Four classes of macromolecules

   All key components of every living cell are made of

macromolecules

. They can be classified into four main classes: Carbohydrates (sugars, starch and cellulose) Lipids (fats, oils, steroids) Proteins (polypeptide chains and their assemblages) Nucleic acids (DNA and RNA) These macromolecules are made the same way in all living things, and they are present in all organisms in roughly the same proportions; they make up what we visually recognize as life Macromolecules are giant

polymers

(

poly

means many;

mer

means units) constructed of many organic molecules called

monomers

. Some polymers are made of the same monomers, e.g. cellulose, while others, e.g. proteins or nucleic acids, are made of a set of different monomers. Polymer chains can be linear, branching or even circular.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

2. Functions of macromolecules

  Some of the roles of macromolecules are:  Energy storage  Structural support  Catalysis  Transport  Protection and defense  Regulation of metabolic activities  Maintenance of homeostasis  Means for movement, growth, and development  Heredity The functions of macromolecules are related to their shape and to the chemical properties of their monomers

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

3. Chemical composition of biomolecules

Here is one way to think of the differences among macromolecule classes:   All carbohydrates such as wood or starch in every plant are made of just three chemical elements: amounts of S and N.)

C, H

and

O

. (Some might also have small All proteins of all organisms on earth are made of five chemical elements:

C, H, O, N, S

.  All nucleic acids of all organisms on earth are made of

C, H, O, N, P

. Here we see a uniformity of living organisms at the most elemental level. There is far less diversity in carbohydrates, which are made from just a few monomers. That is why all starches tend close-up to look alike (carrot or baobab), while proteins look startlingly different.

Elements such as

C, H, O, N, P

and

S

(also called macro elements) make up biomolecules and are therefore the largest dry weight of all living organisms. Other elements are present in small numbers but can still play important roles (e.g. the iron in hemoglobin, which carries oxygen, or the sodium and potassium ions that are responsible for nerve impulses.)

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

4. Monomers

 In living cells, a

small set

of monomers is used to create a variety of polymers. Each polymer is unique in the number and type of monomers used to build it.

Macromolecule

Carbohydrates Lipids Proteins Nucleic acid

Monomers

monosaccharides glycerol, fatty acids amino acids nucleotides

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

5. Monomers to polymers

 To qualify as a building block for polymers, each monomer must be capable of linking with others. When a monomer's

functional group

, a specific arrangement of atoms, reacts with a functional group of another monomer, the two molecules link together with a stable

covalent bond

, one that will not break under normal conditions and will not dissolve in water.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

6. Sucrose, glucose, fructose

 Example:  Sucrose (table sugar) is composed of glucose and fructose.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

7. Functional groups defined

 A functional group is a group of atoms of a particular arrangement that gives the entire molecule certain characteristics. Functional groups are named according to the composition of the group. For example, COOH is a carboxyl group.

 Organic chemists use the letter "R" to indicate an organic molecule. For example, the diagram below can represent a carboxylic acid. The "R" can be any organic molecule.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

8. The seven fundamental functional groups present in biological monomers

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

9. Twenty aminoacids and five nucleotides

 The total number of biologically important monomers is surprisingly small, about 40-50, from which the thousands of biologically important macromolecules are constructed.

 In particular, the set of amino acids common to all living things includes 20 total different molecules, and the set of nucleotides that compose DNA and RNA include 5 total different molecules

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

10. Introducing metabolism

 Where do the building blocks (monomers) of the macromolecules in living cells come from?

METABOLISM

 All living things must have an unceasing supply of energy and matter. The transformation of this energy and matter within the body is called

metabolism Anabolism

 Anabolism is constructive metabolism. Typically, in anabolism, small

precursor molecules,

or

metabolites,

are assembled into larger organic molecules. This always requires the

input

of energy

Catabolism

 Catabolism is destructive metabolism. Typically, in catabolism, larger organic molecules are broken down into smaller constituents. This usually occurs with the

release

of energy

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

11. Polymers, monomers, metabolites

Anabolism Photosynthesis CO 2 Catabolism Respiration Digestion

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

12. Chemical reactions in cells

  Thousands of biochemical reactions, in which metabolites are converted into each other and macromolecules are build up, proceed at any given instant within living cells. However, the greatest majority of these reactions

would occour spontaneously at extremely low rates

.

 For example, the oxidation of a fatty acid to carbon dioxide and water in a test tube requires extremes of pH, high temperatures and corrosive chemicals. Yet in the cell, such a reaction takes place smoothly and rapidly within a narrow range of pH and temperature. As another example, the average protein must be boiled for about 24 hours in a 20% HCl solution to achieve a complete breakdown. In the body, the breakdown takes place in four hours or less under conditions of mild physiological temperature and pH.

How can living things perform the magic of speeding up chemical reactions many orders of magnitude, specifically those reactions they most need at any given moment?

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

13. Introducing enzymes

      The

ENZYMES

are the driving force behind all biochemical reactions happening in cells. Enzymes

lower the energy barrier

between reactants and products, thus increasing the rate of the reaction.

Enzymes are

biological catalysts

. A catalyst is a species that accelerates the rate of a chemical reaction whilst remaining unchanged at the end of the reaction. Catalysis is achieved by reducing the

activation energy

for the reaction. Enzymes can catalyse reactions at rates typically

10 6

faster than the uncatalysed reaction.

to

10 14

times Enzymes are very selective about

substrates where the chemistry takes place

they act upon and also on a substrate.

Both the forward and reverse reactions are catalysed. A catalyst cannot change the position of thermodynamic equilibrium, only the rate at which it is attained.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

14. The active site

 Enzymes are typically

large proteins,

which are

structured specifically

for the reaction they catalyze. Their size provide sites for action and stability of the overall structure.

  Two important sites within enzymes are:  The

catalytic site

, which is a region within the enzyme involved with catalysis, and  The

substrate binding site

which is the specific area on the enzyme to which reactants called substrates bind to.

The catalytic site and substrate binding site are often close or overlapping and collectively they are called the

active site

.

 If the catalytic site is not near the substrate binding site it can move into position once the enzyme is bound to a substrate.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

15. The “Lock-and-key” metaphor

Schematic representation of the action of a hypothetical enzyme in putting two substrate molecules together. (a) In the "lock-and-key" mechanism the substrates have a complementary fit to the enzyme's active site. (b) In the induced-fit model, binding of substrates induces a conformational change in the enzyme.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

16. Aditional components of enzymes

 Often enzymes require additional components to become active. These may be: 

co-factors

: simple cations, or small organic or inorganic molecules that bind loosely to the enzyme, 

prosthetic groups

: similar to co-factors but more tightly bound to the enzyme, or 

co-enzymes

– which are more complex than co-factors and prosthetic groups, they often act as a second substrate or bind covalently with the enzyme to affect the active site.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

17. Structure of carboxypeptidase

The active site of the digestive enzyme carboxypeptidase. (a) The enzyme without substrate. (b) The enzyme with its substrate (gold) in position. Three crucial amino acids (red) have changed positions to move closer to the substrate. Carboxypeptidase carves up proteins in the diet.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

18. Metabolic pathways

   There are thousands of enzyme-catalyzed reactions in a cell. If the biochemical reactions involved in this process were reversible, we would convert our macromolecules back to metabolites if we stop eating even for a short period of time.

To prevent this from happening, our metabolism is organized in

metabolic pathways

. These pathways are a series of biochemical reactions which are, as a whole, irreversible.

These reactions are organized in consecutive steps or pathways where the products of one reaction can become the reactants in another. Every biochemical molecule is synthesized in a biochemical pathway with specific enzymes.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

19. Metabolic pathways of phenylalanine in human

One small part of the human metabolic map, showing the consequences of various specific enzyme failures. (Disease phenotypes are shown in colored boxes.)

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

20. Enzymes build everything

 Thus, enzymes may be considered the quintessence of life. They allow nutrients to be digested; they convert food into energy and new raw materials; they build body structures; they govern all cellular processes.

 But, who builds the enzymes?

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

21. Enzymes are proteins

 Enzymes are composed of proteins, and proteins are long polymers of amino acids. Amino acids all have this general formula:     Amino acids have two functional groups (aminic and carbossilyc), which can react together forming covalent bonds called

peptide bonds

, so that they are linked head-to-tail. The side chain, or R group, can be anything from a hydrogen atom (as in the amino acid

glycine

) to a complex ring (as in the amino acid

tryptophan

).

Each of the 20 amino acids known to occur in proteins has a different R group that gives it its unique properties.

The linear sequence of the amino acids in a polypeptide chain constitutes the

primary structure

of the protein

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

22. The sequence of aminoacids

The peptide bond. (a) A polypeptide is formed by the removal of water between amino acids to form peptide bonds. Each aa indicates an amino acid. R1, R2, and R3 represent R groups (side chains) that differentiate the amino acids. R can be anything from a hydrogen atom (as in glycine) to a complex ring (as in tryptophan). (b) The peptide group is a rigid planar unit with the R groups projecting out from the CN backbone. Standard bond distances (in angstroms) are shown.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

23. Triplets of nucleotides

 How is amino acid sequence determined? Quite simply, by the

nucleotide sequence DNA

.

present on a macromolecule of  The specific amino acid sequence of a polypeptide is determined by the nucleotide sequences of the encodes it.

gene

that  The sequence of nucleotides in the DNA is read three nucleotides at a time. Each group of three, called a

triplet codon

, stands for a specific amino acid. Since there are four different nucleotides in DNA, there are 4 × 4 × 4 = 64 different possible codons. This means that there are more condons than aminoacids.

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

24. The genetic code

 The table of correspondence between triplets and aminoacids is called the

genetic code

.

 The same genetic code is used by virtually all organisms on the planet. There are some exceptions in which a few of the codons have different meanings.

 Thus, the information to arrange aminoacids in a specific sequence with a particular function is coded in a sequence of nucleotides in DNA.

 The process and the machinery that

generates a protein from a DNA sequence

apparatus is called the protein synthesis

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

25. Codons and aminoacids

Amino Acid

Alanine Arginine Asparagine Aspartic acid Cysteine Glutamic acid Glutamine Glycine Histidine Isoleucine Leucine Lysine Methionine Phenylalanine Proline Serine Threonine Tryptophan Tyrosine Valine

3-Letter code

Ala Arg Asn Asp Cys Glu Gln Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val G H I L S T W Y K M F P V

1-Letter code

A R N D C E Q

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini

26. Information flux in a living cell

Structural proteins Carbohydrates Sugars Metabolic pathways Lipids Fatty acids Enzymes Nucleotides Amino acids DNA

Genetica per Scienze Naturali a.a. 03-04 prof S. Presciuttini