投影片 1 - National Cheng Kung University

Download Report

Transcript 投影片 1 - National Cheng Kung University

10. Superconductivity

• • • Experimental Survey – – – – – – – Occurrence of Superconductivity Destruction of Superconductivity by Magnetic Fields Meisner Effect Heat Capacity Energy Gap Microwave and Infrared Properties Isotope Effect Theoretical Survey – – – – – – – – – – – – – – – Thermodynamics of the Superconducting Transition London Equation Coherence Length BCS Theory of Superconductivity BCS Ground State Flux Quantization in a Superconducting Ring Duration of Persistent Currents Type II Superconductors Vortex State Elimination of

H c

1 and

H c

2 Single Particle Tunneling Josephson Superconductor Tunneling DC Josephson Effect AC Josephon Effect Macroscopic Quantum Interference High-Temperature Superconductors

K.Onnes (1911) :

ρ

→ 0 as

T

T C

Experimental Survey

1. ρ → 0 for

T < T C

. Persistent current in ring lasts > 1 yr.

2. NMR: supercurrent decay time > 10 5 yrs.

3. Meissner effect: superconductor = perfect diamagnet.

Normal state SuperC state 4. BCS theory : Cooper pairs (

k

 ,

–k

 ). See App. H & I.

Occurrence of Superconductivity

Occurrence : Metallic elements, alloys, intermetallic compounds, doped semiconductors, organic metals, … Range of

T C

: 90K for YBa 2 Cu 3 O 7 .

.001K for Rh.

Si:

T C

= 8.3K at

P

= 165 Kbar

Destruction of Superconductivity by Magnetic Fields

Magnetic field destroys superconductivity.

H C

B aC

in CGS units

H C

 

C

 0

H C

H C

  1 

T C

 2   Magnetic impurities lower

T C

10 –4 : Fe destroys superC of Mo (

T C

1% Gd lowers

T C

= 0.92K ).

of La from 5.6K to 0.6K.

Non-magnetic impurities do not affect

T C .

Meissner Effect

B

= 0 inside superC Normal state SuperC state For a long thin specimen with long axis //

H

a

,

H

is the same inside & outside the specimen (depolarizing field ~ 0)

B

H

a

 4 

M

 0 →

M H a

  1 4  Caution : A perfect conductor (ρ = 0) may not exhibit Meissner effect. Ohm’s law

E

 

j

E

 0

if

  0 1

c

 

B

t

 0 →  

B

t

 0 (

B

is frozen, not expelled.) Also, a perfect conductor cannot maintain a permanent eddy current screen →

B

penetrates ~1 cm/hr.

Most elements Alloys / Transition metals with high ρ.

ρ = 0 but

B

 0 in vortex state .

H C

2

H C

2 ~ 41T for Nb 3 (Al 0.7

~ 54T for PbMo 6 S 8 .

Ge 0.3

).

Commercial superconducting magnets of ~1T are readily available.

C N

 

T

T

S N

T

S N

 

T

Heat Capacity

S S

S N

→ superC state is more ordered Δ

S

~ 10 –4

k B

→ only 10 –4 per atom e’s participate in transition.

Al

C e S

e

 → energy gap

Energy Gap

Comparison with optical & tunneling measurements →

C e S

e

E g

/ 2 not

C e S

e

E g

/

E g

   4 

F

For

H a

= 0, n-s transition is 2 nd order ( no latent heat, discontinuity in

C e

,

E g

→0 at

T C

).

Microwave and Infrared Properties

EM waves are mostly reflected due to impedance mismatch at metal-vacuum boundary.

They can penetrate about ~20A into the metal.

Photons with  ω <

E g

are not absorbed → surface penetration is greater in superC than in normal state. For

T

For

T

<<

T C ρ s ρ s

T C

,

ρ s

, = 0 for  ω <

E g

ρ n

for  ω >

E g

.

. (sharp threshold at

E g

)  0 for all  ω  0 ( screening of

E

incomplete due to finite inertia of

e

)

Isotope Effect

Isotope effect:

M T C

const

→ e-phonon interaction involved in superC. Original BCS:

k T B C

 2   

D e

 1 /

N V

T C

 

Debye

M

 1/2 Deviation from α = ½ can be caused by coulomb interaction between e’s.   1 2 Absence of isotope effect due to band structure.

Theoretical Survey

               Thermodynamics of the Superconducting Transition London Equation Coherence Length BCS Theory of Superconductivity BCS Ground State Flux Quantization in a Superconducting Ring Duration of Persistent Currents Type II Superconductors Vortex State Estimation of H c1 and H c2 Single Particle Tunneling Josephson Superconductor Tunneling DC Josephson Effect AC Josephon Effect Macroscopic Quantum Interference • • • Thermodynamics Considerations Phenomenological Models Quantum Theory

Type I superC:

Thermodynamics of the Superconducting

B

4 

M

W

   0

B a

M

d

B

a dF d

B

a F N F N

S

  

F S

F N

 2

B aC

8 

F N F S d F S

 1 4 

B d a B a

 

a

F S

B a

2 8  

F S

 2

B aC

8 

dF N dT T C

dF S dT T C

→ no latent heat ( 2 nd order transition) (continuous transition)

London model: → → 4 

j

c

London Equation

j

 

c

4 

L

2

A

→ in London gauge:

c

4  2

L



A

  4  

j

c c

4 

L

2  

B

1  2

L



A

  1  2

L

B

2

B

0  2

B

 1 

L

2

B

London equation

A

n

surface with

j

 0  0

λ L

= London penetration length

B

/ / 

B

/ /

e

x

 / 

L

L

mc

2 4 

nq

2 see flux quantization • • Meissner effect not complete in thin enough films.

H C

of thin films in parallel fields can be very high.

Coherence Length

Coherence length ξ ~ distance over which

n S

remains relatively uniform.

See Landau-Ginzburg theory, App I., for exact definition.

Local properties = Average of non-local properties over regions ~ ξ .

Minimum thickness of normal-superC interface ~ ξ .

Let → Spatial variation of

ψ

increases K.E.

→ High spatial variation of

ψ S

can destroy superC.

 

e i k x

  1 2 

e

  

e i k x

  1     

L L

/ 2 / 2  

p

2 2

m

    2

k

2 2

m

p

2 2

m

    2 1       2 1     2 2

m

  

dx

 1 2  2 

e i q x

e

i q x

 2 sin

q Lq

2   

L L

/2 /2  1 

e

i q x

dx

 

e

i k x

 2

m

2 

k

q

 2

e

 

k

q

 2  1 

e i q x

k

1 cos

qx

  2

k e i k x

1 

e

i q x

     2 2

m k q

2 2 2

m

k

q

 2 

k

2  2 2

m

k

2 

k q

 for

q

<<

k

    2 2

m k q

→ Critical modulation for destroying superC is Intrinsic coherence length :  0  2

k F

2

mE g

v F

2

E g

see Table 5 ξ in impure material is smaller than ξ 0 . (built-in modulation) 2 2

m k q

0 

E g

ξ & λ depend on normal state mfp  . 1 1 0 

l

1 Pure sample:   0

L

see Tinkham, p.7 & 113.

→   

L

 0 Dirty sample:    0

l L

 0

l

→   

L l ξ

0 = 10

λ L

  1 2   1 2 Type I Type II

BCS Theory of Superconductivity

BCS = Bardeen, Cooper, Schrieffer BCS wavefunction = Cooper pairs of electrons

k

 and –

k

 (

s

-wave pairing) • • • • • Features & accomplishments of BCS theory : Attractive e-e interaction –

U

E g

between ground & excited states.

E g

U

dictates

H C

, thermal & EM properties.

is due to effective e-ph-e interaction.

λ , ξ , London eq. (for slowly varying

B

), Meissner effect, … Quantization of magnetic flux involves unit of charge 2

e

.

U D

(

ε F

) << 1 :

T C

 1.14

 exp    

U D

1  

F

  

E g

 3.528

k T B C θ

= Debye temperature  Higher

ρ

→ Higher

T C

(worse conductor → better superC)

BCS Ground State

T

= 0 Normal state Cooper pair: 1-e occupancy with

T

eff =

T C

Super state: Cooper pair mixes e’s from below & above ε F   normal    super but

E

normal 

E

super due to –

U

.

Cooper pair : (

k

 , –

k

 ) → spin = 0 (boson) see App. H

Energy intensity for large number of photons: →

Flux Quantization in a Superconducting Ring

E

 4  

n e i

I

 1 4 

E

*  2  1 4  4  

n e

i

 2 

n

Let

ψ

(

r

) be the super state wave function.

Particle density

n

=

ψ

*

ψ n

= constant → Velocity operator:  

n e i

v

 1

m

p

q

A

c

 *   1 

n e

i

  

q

A

c

Particle flux:  *

v

 

n m e

i

i

 

q

A

c e i

 

n m q c

A

 Electric current density: 

j

n q m c

j

 

A

q

 *

v

  

n q

2

m c

B

n q m q

A

c

London eq. with 

L

mc

2 4 

nq

2 

j

n q m q

A

c

Meissner effect:

B

=

j

= 0 inside superC →

q

A

c

C c d

l

q c

C

A

d

l

q

S d

σ

c q

S

B

d

σ

c ψ

measurable →

ψ

single-valued → Δ = 2

π s

  

h c s q

Flux quantization

q

= –2e → Flux through ring :

h c

2

e

  7

gauss cm

2       

ext sc s

0 = fluxoid or fluxon Φ ext not quantized → Φ sc must adjust

s

Z

see Tinkham, p.121, for a derivation via Sommerfeld quantization rule

Duration of Persistent Currents

Thermal fluctuation : superC → normal : fluxoid escapes from ring Transition rate

W

= ( attempt freq ) ( Boltzmann factor for activation barrier ) Boltzmann factor for activation barrier = exp( −

β

Δ

F

) Free energy of barrier = Δ

F

= (minimum volume) (excess free energy density of normal state) minimum volume 

R

ξ 2 .

R =

wire thickness excess free energy density of normal state =

H C

2 / 8

π.

R

= 10 −4 cm,

ξ

= 10 −4 cm,

H C

= 10 3 G, gives Δ

F

 10 −7 erg.

R

 8 2 

H C

2 Note: estimate is good for

T

= 0 to 0.8

T C

while Δ

F

→ 0 as

T

T C

− β  10 −15 erg at

T

= 10K →

e

F

e

 10 8  10    7  Attempt freq 

E g

/   10 −15 / 10 −27  10 12 s −1

W

 10 12  10    7   10    7 

s

 1 Age of universe ~ 10 18 s Exceptions: Near

T C

or in Type II materials.

Type II Superconductors

H a < H C1 H C1 < H a < H C2 H C2 < H a B = 0  B   0 fluxoid penetration M = 0

Type I

ξ > λ  2

Type II

ξ < λ  2    0

l

Electronic structure not much affected

Normal-Super Conductor Interface

Ref: W.Buckel, “Superconductivity” Lowering of energy due to field penetration 

B

 

A H

8  2 Increase of energy due to destruction of Cooper pairs: Normal: 

B

 

C

 0 Bulk superC: 

B

C

C

  

A H

8 

C

2

H

8 

C

2

V

Interface energy at

H

=

H C

 

C

 

B

  

A H

8 

C

2    0 0

Type I for Type II

H C2 for Nb 3 Sn ~ 100kG.

Type I

surface energy > 0

Type II

surface energy < 0 Thin films with H normal to surface Type I: Intermediate state Type II: Vortex state Fluxoid penetration reduces increase of energy due to flux repulsion.

Vortex State

Meissner effect starts breaking down when a normal core can be substained. Normal core radius is always  Fluxoids well separated: fluxoid radius  λ

H C

1 ξ ; otherwise it’ll be bridged by surrounding ψ S     0 2 = Field for nucleation of single fluxoid .

Closed-packed fluxoids: fluxoid radius  ξ

H C

2     0 2 Type II: κ > 1 → λ > ξ Type I: κ < 1 → λ < ξ →

H C

1 <

H C

2 →

H C

1 >

H C

2 Vortex state allowed.

SuperC destroyed before fluxoid allowable → no vortex state.

Flux lattice in NbSe 2 at 1000 G & 0.2K.

STM showing DOS at ε F .

E N – E S

= Stabilization energy →

f

core  1 8 

H C

2   2 Decrease of

E

for allowing

H

penetration:

f

mag   1 8 

B a

2   2 Total core energy wrt super-state

f

Threshold for stable fluxoid:

f

= 0 at

B a

=

H C

1 .

H C

1

H C

2      0    0 2 2 →

H C

2   2

H C

1

H C

H C

1

H C

2 

f

core 

f mag

→  1 8 

H C

2  2 

B a

2  2 

H C

H C

1   

H C

1 

H C

  

H C

2    1

H C

2

Single Particle Tunneling

2 metals I and II separated by insulator

C

.

T C

Al Sn 1.14K 3.72K

Glass + In contact + Al strip 1mm wide 2000A thick + Al 2 O 3 20-30 A: S.P.T.

10A: J.T.

+ Sn strip Direct measurement of J.T. requires double junctions. See W.Buckel, “Superconductivity”, p.85.

I, II both normal: line 1

N S

N n

  2   2 T  0 I normal, II super: T = 0, line 2 T  0, line 3

I , II both super: T  0

Josephson Superconductor Tunneling

• • • DC Josephson effect: DC current when

E = B = 0

AC Josephson effect: rf oscillation for DC V.

Macroscopic long-range quantum interference:

B

across 2 junctions → interference effects on I S

j

 →

DC Josephson Effect

i

  

t

1 

T

 2

i

  

t

2 

n e j i

j

  1 

t

   1 2

n

1 

n

1 

t

i

  

t

2    1 2

n

2 

n

2 

t

 

t

i

 

t

    1 2  

i T

 2  

i T

 1

T

 1 

T

= transfer frequency 1 2

n

1 

n

1 

t

i

   1

t

 

i T

  2 1 1 2

n

2 

n

2 

t

i

  2 

t

 

i T

  1 2  

i T

 

i T

   2  1

n

2

n

1

e i

n

1

n

2

e

i

 Real parts: Imaginary parts: 1 2

n

1 

n

1 

t

T n

2

n

1 sin  1 2

n

2 

n

2 

t

 

T

  1 

t

 

T n

1

n

2 sin 

n

2

n

1 cos    2 

t

 

T n

1

n

2 cos   → 

n

1 

t

 2

T

n

2 

t

  2

T n n

1 2 sin 

n n

1 2 sin    

t

   1

n

1  1

n

2  

n

1 

n

2 

n n

1 2 cos  0  

n

1 

t

  

n

2 

t J

 

n

1 

t

J

J

0 sin 

n

1 

n

2 → DC current up to

i C

while

V

= 0.

AC Josephson Effect

V

across junction:

i

  

t

1 

T

 2 

eV

 1   1 

t

   1 2

n

1   

t

2    1 2

n

2  

n

1

t

i

 

t

n

2 

t

i

 

t

    1 2  

i T

 2 

i e V

 1  

i T

 1 

i e V

 2 Real parts: 1 2

n

1 

n

1 

t

T

1 2

n

2 

n

2 

t

 

T n

2

n

1 sin 

n

1

n

2 sin  → 

i

  

t

2 

T

 1 

eV

 2 1 2

n

1 

n

1 

t

i

  1 

t

 

i T

1 2

n

2 

n

2 

t

i

  2 

t

 

i T n

2

n

1

e i

 

i e V q

  2

e n

1

e

i

n

2 

i e V

n

1 

t

 2

T

n

2 

t

  2

T n n

1 2 sin 

n n

1 2 sin   

n

1 

t

  

n

2 

t

Imaginary parts:   1 

t

 

T

  2 

t

 

T n

2

n

1 cos  

e V n

1

n

2 cos  

e V

   

t

   1

n

1  1

n

2  

n

1 

n

2 

n n

1 2 cos   2

e V

0  2

e V t J

J

0 sin  

J

0 sin  0  2

e V t

AC current with   2

e V

 483.6

Mhz

for

V

= 1 μV Precision measure of

e

/ 

Macroscopic Quantum Interference

Around closed loop enclosing flux Φ: For

B

= 0, 2 

s

 2 

q h c

  2

e c

 

a

  2

a

  1

a

 

b

  2

b

  1

b

For

B

 0, or   

b

a

 2

e c

b

  0 

e c

 

a

  0 

e c

J tot

J b

J a

J

0   sin    0 

e c

sin    0 

e c

      2

J

0 sin  0 cos

e

c

periodicity = 39.5 mG I max = 1 mA zero offset due to background B Junction area = 3 mm  0.5 mm periodicity = 16 mG I max = 0.5 mA Prob 6

High-Temperature Superconductors

T C ceiling for intermetallic compounds = 23K.