Transcript Document
Low Temperature Thermal Transport Across the Cuprate Phase Diagram Mike Sutherland Louis Taillefer Rob Hill Cyril Proust Filip Ronning Makariy Tanatar Christian Lupien Etienne Boaknin Dave Hawthorn J. Paglione M. Chiao R.Gagnon, H.Zhang D.Bonn, R.Liang, W.Hardy P.Fournier, R.Greene A.P.Mackenzie, D. Peets, S. Wakimoto Department of Physics University of Toronto What questions can we address by studying low temperature thermal conductivity as a function of doping in the cuprates ? Temperature How well does d-wave BCS theory describe the superconducting state ? m a g n e t i s m Is the superconducting order parameter pure d-wave throughout the phase diagram? pseudogap metal superconductor Carrier concentration How does the pseudogap influence the behaviour of low-energy quasiparticles? The density of states in a d-wave superconductor density of states presence of nodes quasiparticles at low T g clean limit Linear density of states at low energy - governs all low temperature properties impurity bandwidth impurity effects Finite density of delocalised states at zero energy Fermi Liquid Theory of d-wave Nodal Quasiparticles d-wave gap: = 0cos(2) E The quasiparticle excitation spectrum near the nodes takes the form of a ‘Dirac cone’ : E v F k1 v 2 k 2 2 2 2 2 With: v2 1 kF node Thermal Conductivity Primer l A Q T κ e 13 γTvF l0e Q l κ T A k = kelectrons + kphonons κ ph 3 ph 1 3 βT vsl0 κ T phonons ~ T3 Kinetic theory formulation: κ cvl 1 3 electrons ~ T 0 T2 d-wave BCS theory of thermal conductivity Cooper pairs carry no heat Δo from κ0/T Electronic heat transport provided solely by quasiparticles (T 0, T<<g ) κ 0 k 2B n vF v2 T 3 d v2 vF This result is universal with respect to impurity concentration A. Durst and P. A. Lee, Phys. Rev. B 62, 1270 (2000). M. J. Graf et al., Phys. Rev. B 53,15147 (1996). v2 2 1 0 (d wave) k F node k F Nodal quasiparticles in optimally doped Cuprates Optimally Doped Bi-2212 v 2 (d wave) k0 T 0.15 mW K 2 cm F 19 2 2 1 0 k F node k F 0 = 30 meV Weak Coupling BCS: 0 = 2.14kBTc= 17 meV Increase Coupling: 6 ARPES: v2 1.2310 cm/s vF 2.5 107 cm/s M.Chiao et al. PRB 62 3554 (2000) vF v2 0 4kBTc Ding et al. PRB 54 (1996) R9678 Mesot et al. PRL 83 (1999) 840 (,p) (p,p) doping dependence: vF G (p,) E (k ) vF k1 k LSCO(x) F ~ 2.5 x 105 ms1 essentially doping independent X.J. Zhou et. al. Nature 423 398 ( 2003 ) F Nodal quasiparticles in overdoped Cuprates overdoped Tl 2201 Tc = 15K Doping Tc = 27K Tc = 89K 0 = 4kBTc Tc = 85K How do we estimate hole concentration [p]? Tc 2 1 82 . 6 ( p 0 . 16 ) Tcmax Tc=15 K sample: Proust et al., PRL 89 147003 (2002). Other samples: Hawthorn et. al. to be published Nodal quasiparticles in underdoped Cuprates underdoped YBCO k0/T vF/v2 as doping as doping simple BCS theory violated: Δo does not follow ΔBCS ! Sutherland et al. PRB (2003) The pseudogap in underdoped Cuprates (,p) (p,p) G (p,) T = 15 K Campuzano et. al. PRL 83 (1999) 3709 Norman et. al. Nature 392, 157 (1998) White et. al. Phys. Rev. B. 54, R15669 (1996) Loeser et. al. Phys. Rev. B. 56, 14185 (1996) pseudogap is : (i) quasiparticle gap (ii) must have nodes (iii) must have linear dispersion Underdoped La2-xSrxCuO4 Linear Term vs. Doping 300 κ 0 k 2B n vF v2 T 3 d v2 vF linear term YBCO linear term LSCO 200 100 LSCO: low dopings 40 0.1 0.15 0.2 0.25 hole concentration [ p ] Presence of static SDW order? Large intrinsic crystalline disorder? 0 0.05 2/3(k h/2p)(n/d) B 30 2 0 k / T [ W/K cm ] 0 2 k / T [ W/K cm ] 400 20 10 0 0.02 0.04 0.06 0.08 hole concentration [ p ] 0.1 Summary and Outlook doping dependence of superconducting gap maximum : overdoped – optimal doped: 0 scales with Tc (BCS theory) optimal doped – underdoped: 0 increases while Tc decreases (Failure BCS theory) existence of nodes throughout the phase diagram: no evidence for quantum phase transition to d+ix in the bulk Question: What happens near the AF – SC boundary? (,p) (p,p) doping dependence: vF G (p,) E (k ) vF k1 k LSCO(x) ARPES data Z.X.Shen F ~ 2.5 x 105 ms1 essentially doping independent F Specular Reflection of Phonons V3Si s-wave SC (thermal insulator, kel =0) = 1.7 Sapphire Specular reflection lph = f(T) kph/T~ T, <2 Fit data to k/T = ko/T + BT R. O. Pohl* and B. Stritzker, PRB 25, 3608 (1982). ko/T = 0