Transcript Slide 1

By: Avery & Josiah
http://www.google.com/imgres?q=double+helix+pictures&um=1&hl=en&safe=active&tbm=isch&tbnid=ZVX7IU7VLMP9YM:&imgrefurl=http://www.d
nareplication.info/dnadoublehelix.php&docid=koDmkevb_A9ixM&imgurl=http://www.dnareplication.info/images/dnadoublehelix2.jpg&w=360&h=3
60&ei=d0RiTWdCIPW2gXZhMDZCA&zoom=1&iact=hc&vpx=247&vpy=139&dur=2781&hovh=225&hovw=225&tx=142&ty=166&sig=115255748533976401415&page=
1&tbnh=149&tbnw=149&start=0&ndsp=27&ved=1t:429,r:1,s:0&biw=1280&bih=827
Molecular biology
 Nucleotides
 Polynucleotide
 Sugar-phosphate backbone
 DNA
 A-T-C-G-U
 Double helix
 DNA polymerases

http://www.google.com/imgres?q=molecular+biology+pictures+website&um=1&hl=en&safe=active&s
a=N&tbm=isch&tbnid=c8TkzXf6WRa45M:&imgrefurl=http://network.nature.com/profile/eva/webactivities&docid=Sc8reHUudzlhoM&imgurl=http://network.nature.com/system/group/000/000/297/origi
nal.png&w=300&h=300&ei=MUViT6fPGeLk2AXamu3TCQ&zoom=1&iact=hc&dur=938&sig=115255748533
976401415&page=1&tbnh=147&tbnw=147&start=0&ndsp=24&ved=1t:429,r:10,s:0&tx=104&ty=118&vpx=8
77&vpy=301&hovh=225&hovw=225&biw=1280&bih=827

Study of heredity at a molecular level
http://www.google.com/imgres?q=molecular+biology+pictures+website&um=1&hl=en&safe=active&sa=N&tbm=isch&tbnid=__scFXq0QazZ9M
:&imgrefurl=http://www.exponent.com/toxicogenomics/&docid=28WVFuz7Svvp0M&imgurl=http://www.exponent.com/files/Uploads/Images/t
oxicology/dna1.jpg&w=300&h=400&ei=MUViT6fPGeLk2AXamu3TCQ&zoom=1&biw=1280&bih=827&iact=rc&dur=93&sig=11525574853397640141
5&page=1&tbnh=151&tbnw=113&start=0&ndsp=24&ved=1t:429,r:0,s:0&tx=63&ty=76
Organic monomer consisting of a fivecarbon sugar to a nitrogen base and
phosphate group
 Building block of nucleic acid

http://www.google.com/imgres?q=nucleotide+images&um=1&hl=en&safe=active&tbm=isch&tbnid=zb6hQ5GblmNqBM:&imgrefurl=http://ww
w.beltina.org/health-dictionary/nucleotide-definition-structural-component-dnarna.html&docid=RPfdnWKonyBl4M&imgurl=http://www.beltina.org/pics/nucleotide.jpg&w=450&h=500&ei=OEliT5PzLofU2AXA1aTOCA&zoom=1
&biw=1280&bih=827&iact=rc&dur=313&sig=115255748533976401415&page=1&tbnh=161&tbnw=145&start=0&ndsp=23&ved=1t:429,r:18,s:0&tx=7
5&ty=82

Polymer made up of many nucleotides
covalently bonded together
http://www.google.com/imgres?q=polynucleotide+images&start=90&um=1&hl=en&safe=active&tbm=isch&tbnid=NCl7GtzkLhu8zM:&imgrefurl
=http://www.lockpicking101.com/viewtopic.php%3Ff%3D9%26t%3D10894%26start%3D15&docid=e7YHmCnjDopaRM&imgurl=http://iwrwww1.fz
k.de/biostruct/Assets/1a00x500.jpg&w=500&h=500&ei=9EhiT4bqHsGY2AXMuYnmCA&zoom=1&iact=hc&vpx=179&vpy=186&dur=94&hovh=225&
hovw=225&tx=85&ty=138&sig=115255748533976401415&page=4&tbnh=153&tbnw=146&ndsp=29&ved=1t:429,r:6,s:90&biw=1280&bih=827

Alternating chain of sugar and
phosphate to which DNA and RNA
nitrogen bases are attached
http://www.google.com/imgres?q=sugarphosphate+backbone+images&um=1&hl=en&safe=active&tbm=isch&tbnid=05h9aZ8VWy9ryM:&imgrefurl=https://wikispaces.psu.edu/display/
230/Properties%2Bof%2BMacromolecules%2BIINucleic%2BAcids,%2BPolysaccharides%2Band%2BLipids&docid=iWoRY1GHCLnANM&imgurl=https://wikispaces.psu.edu/download/attachment
s/40047583/image1.jpg&w=450&h=500&ei=OUhiT__kLMTO2AWS1LjOCA&zoom=1&iact=hc&vpx=683&vpy=442&dur=94&hovh=237&hovw=213&tx=143&ty=165&sig
=115255748533976401415&page=1&tbnh=162&tbnw=146&start=0&ndsp=27&ved=1t:429,r:17,s:0&biw=1280&bih=827
Deoxyribonucleic acid
 Genetic material that is inherited from
their parents
 Structure is a double helix

http://www.google.com/imgres?q=dna+images&um=1&hl=en&safe=active&tbm=isch&tbnid=L9SvYNHi1SeFcM:&imgrefurl=http://www.thedna
store.com/&docid=Pss0wHdXVOAovM&imgurl=http://www.thednastore.com/images/mousepads/DNA1b.jpg&w=350&h=295&ei=7EdiT8GgFuK
W2gXuPTiCQ&zoom=1&iact=hc&vpx=616&vpy=301&dur=16&hovh=206&hovw=245&tx=132&ty=140&sig=115255748533976401415&page=1&tbnh=149&
tbnw=185&start=0&ndsp=29&ved=1t:429,r:10,s:0&biw=1280&bih=827
Adenine- double-ring structure connects
with thymine
 Thymine- single-ring structure that
connects with Adenine
 Guanine- double-ring structure that
connects with cytosine
 Cytosine- single ring structure that
connects with guanine
 Uracil- base in RNA & replaces thymine
http://www.google.com/imgres?q=nucleotides+images&um=1&hl=en&safe=active&tbm=isch&tbnid=aS8dFqwyDOXV7M:&imgrefurl=http://w
ww.biology-online.org/1/5_DNA.htm&docid=BGQ3_g-uASc8EM&imgurl=http://www.biologyonline.org/images/nucleotides.gif&w=357&h=329&ei=wEZiT_afBYWC2AWbq8XRCA&zoom=1&iact=hc&vpx=185&vpy=465&dur=4312&hovh=215
&hovw=234&tx=152&ty=157&sig=115255748533976401415&page=1&tbnh=144&tbnw=156&start=0&ndsp=22&ved=1t:429,r:12,s:0&biw=1280&bih=
827

Structure of DNA in living cells
 Known for it’s two adjacent
polynucleotide strands
 Wound in a spiral shape

http://www.google.com/imgres?q=double+helix+images&um=1&hl=en&safe=active&tbm=isch&tbnid=KmTLLtPvQsVxYM:&imgrefurl=http://ww
w.instructables.com/id/Curved-Circuit-Art-Make-A-Double-Helix-LEDLanter/&docid=UhY9lICnFyn5DM&imgurl=http://www.instructables.com/files/deriv/F4H/GUKS/GCI8JSAC/F4HGUKSGCI8JSAC.MEDIUM.jpg&w=5
00&h=500&ei=T0diT83RJqGU2AWti63UCA&zoom=1&biw=1280&bih=827&iact=rc&dur=109&sig=115255748533976401415&page=3&tbnh=160&tbn
w=146&start=60&ndsp=32&ved=1t:429,r:22,s:60&tx=73&ty=71

Enzyme that assembles DNA nucleotide
into polynucleotide's using an existing
strand of DNA as a template
http://www.google.com/imgres?q=dna+polymerase+images&um=1&hl=en&safe=active&tbm=isch&tbnid=oNUpBon3Lcgs7M:&imgrefurl=http:
//www.neb.com/nebecomm/products/productf540.asp&docid=L22GSxGhTkb3wM&imgurl=http://www.neb.com/nebecomm/productfiles/1936/images/F540_fig1_v1_000027.jpg&w=400&h=332&ei=tEdiT7npOYWM2gX9pThCA&zoom=1&iact=hc&vpx=181&vpy=149&dur=109&hovh=204&hovw=246&tx=175&ty=119&sig=115255748533976401415&page=1&tbnh=14
7&tbnw=171&start=0&ndsp=24&ved=1t:429,r:0,s:0&biw=1280&bih=827
Was known to be a chemical in cells by
the late 1800’s
 By 1930 many biologists believed that a
molecule not a chemical mixture was
the basis of inheritance
 This caused attention on chromosomes
 The biggest question in DNA is it’s
structure

Contain nucleotides
 Nucleotides result in a sugar-phosphate
backbone
 It is a repeating pattern

James D. Watson- American scientist,
attended Cambridge University there he
met Crick
 Francis Crick- Englishman who studied
protein structure at Cambridge University

Watson saw an x-ray image of DNA
 To his eye the photo revealed the basic
shape of DNA to be helix
 He and Crick deduced that the
diameter of the helix was uniform
 The thickness of the helix suggested it
was made up of two polynucleotide
strands(double helix)

Adenine- connects with T
 Thymine- connects with A
 Guanine- connects with C
 Cytosine- connects with G
 Uracil- found in RNA and replaces T,
connects with A

5’ is attached to a
Phosphate group
 3’ is attached to a
Hydroxyl group
 Asymmetrical
 Gives DNA strand
“direction”

http://users.rcn.com/jkimba
ll.ma.ultranet/BiologyPages
/D/DNAReplication.html
When organisms reproduce, a set of
genetic materials must pass from one
generation to another.
 Each DNA strand serves as a template to
guide reproduction of the other strand.
 Base-pairing rules apply.


Parental (old) DNA molecule become
the template for the assembly of the
new strand (daughter)
DNA polymerase adds a nucleotide to
the end of the growing daughter strand
(polymer).
 This process is fast and accurate
 50 nucleotides per second
 Fewer than one in a billion incorrectly
paired.
 DNA can be harmed by toxic chemicals,
x-rays, and ultraviolet light

Replication begins at specific sites
(orgins of replication)
 Parental DNA open up as daughter
strands start on both sides of each
bubble. (page 177, figure 10.6)
 Once all “bubbles” merge a complete
DNA molecule forms

http://www.google.com/imgres?q=Strawberry&hl=en&biw=1441&bih=632&gbv=2&tbm=isch&tbnid=9OBPhsxOmGXuTM:&imgrefurl=http://ww
w.mhl.org/kids/fun/%3Fp%3D2975&docid=MZ-6NvAjQkY4zM&imgurl=http://www.mhl.org/kids/fun/wpcontent/uploads/2010/06/21694_strawberry.jpg&w=350&h=350&ei=EGRiTCpEsqAgwfI0N3_Ag&zoom=1&iact=hc&vpx=1022&vpy=162&dur=1497&hovh=225&hovw=225&tx=149&ty=139&sig=104759218493436132396&pa
ge=1&tbnh=125&tbnw=125&start=0&ndsp=24&ved=1t:429,r:6,s:0
The long, thick fibers of DNA store the
information for the functioning of the
chemistry of life. DNA is present in every cell of
plants and animals. The DNA found in
strawberry cells can be extracted using
common, everyday materials. We will use an
extraction buffer containing salt, to break up
protein chains that bind around the nucleic
acids, and dish soap to dissolve the lipid (fat)
part of the strawberry cell wall and nuclear
membrane. This extraction buffer will help
provide us access to the DNA inside the cells.
1. What do you think the DNA will look
like?
 2. Where is DNA found?









heavy duty ziplock bag
1 strawberry
10 mL DNA extraction buffer (soapy, salty
water)
cheesecloth
funnel
50mL vial / test tube
glass rod, inoculating loop, or popsicle stick
20 mL ethanol
1. Place one strawberry in a Ziploc bag.
2. Smash/grind up the strawberry using your fist and fingers
for 2 minutes. Careful not to break the bag!!
 3. Add the provided 10mL of extraction buffer (salt and
soap solution) to the bag.
 4. Kneed/mush the strawberry in the bag again for 1
minute.
 5. Assemble your filtration apparatus as shown to the right.
 6. Pour the strawberry slurry into the filtration apparatus
and let it drip directly into your test tube.
 7. Slowly pour cold ethanol into the tube. OBSERVE _
 8. Dip the loop or glass rod into the tube where the
strawberry extract and ethanol layers come into contact
with each other. OBSERVE _









1. It is important that you understand the steps in the extraction procedure and why each step was
necessary. Each step in the procedure aided in isolating the DNA from other cellular
materials. Match the procedure with its function:
PROCEDURE FUNCTION
A. Filter strawberry slurry through cheesecloth ___ To precipitate DNA from solution
B. Mush strawberry with salty/soapy solution ___ Separate components of the cell
C. Initial smashing and grinding of strawberry ___ Break open the cells
D. Addition of ethanol to filtered extract ___ Break up proteins and dissolve cell membranes
2. What did the DNA look like? Relate what you know about the chemical structure of DNA to
what you observed today.
3. Explain what happened in the final step when you added ethanol to your strawberry extract.
(Hint: DNA is soluble in water, but not in ethanol)
4. A person cannot see a single cotton thread 100 feet away, but if you wound thousands of
threads together into a rope, it would be visible much further away. Is this statement
analogous to our DNA extraction? Explain.
5. Why is it important for scientists to be able to remove DNA from an organism? List two
reasons.
6. Is there DNA in your food? ________ How do you know? Strawberry DNA