NMR Characterization of Sidewall Functionalized SWNT
Download
Report
Transcript NMR Characterization of Sidewall Functionalized SWNT
NMR Characterization of
Sidewall Functionalized
SWNT
By
Heather Rhoads
Abstract
Since the discovery of SWNT (Single walled carbon
nanotubes) there has been an intense effort to
characterize, understand, and exploit their properties.1, 2
To achieve the full potential of SWNT, they must be
debundled into individual SWNTs. Debundling is achieve
through
several
techniques
including
sidewall
functionalization. The functionalization must be proven
but currently utilized techniques give little information
about the functionalization. More recently nuclear
magnetic resonance (NMR) has been utilized to prove
functionalization and the structure of the functionalized
SWNT. This paper gives background, theory, review of
the literature, and future directions.
Background
SWNT discovery Iijima in 1991
Avg Diameter of 1 nm
Length up to 5 cm
Produced by
Arc discharge
Laser ablation
Chemical vapor deposition (CVD)
Literature Review
First utilized on Multiwalled carbon nanotubes3-5
Theoretical background calculations6-10
Location of SWNT in 13C NMR
Separation of types of SWNT
Properties
Structural, electronic, phase transitions, and
dynamics11
Theoretical separation of metallic and
semiconducting12
Cutting, bending twisting and defects effect electronic
properties13-14
Literature Review (cont)
Growth Mechanism study15-17
Monitor opening and closing of SWNT18
Hydrogen gas storage19-23
Adsorption sites and mechanism24-27
Lithium and Cesium Intercalated28-33
Polymers and SWNT interactions34-42
Desired Properties of SWNT
Electrical – 1000x greater than copper
Mechanical - specific strength is aprox.
200x greater than steel
Elastic – 5x greater than steel
Characteristics of SWNT
SWNT is a rolled up graphene sheet
Composed of sp2 hybirderized carbon
Hexagonal pattern
Rolling along the hexagonal pattern forms
along chiral vector a1, a2 giving units (n, m)
Given by the following equation:
Ch = n (a1) + m (a2)
Vector units of SWNT
Figure 1. The n and m coordinates of SWNT structure.
Properties Determined by Chiral Vector
Diameter - dt = (Ö3/p) ac-c (m2 + mn +
n2)1/2;
Metallic - n-m/3 = integer: 1, 2,3…
Semiconducting – all other cases
Type of SWNT
Arm chair – n=m
Zigzag – m=0
Chiral – all other combinations of (n, m)
Forms of SWNT
Figure 2. Top) armchair SWNT, Middle) zigzag SWNT, Bottom) chiral SWNT. 43-44
Problem
SWNT can not over come van der Waals
effects
Form bundles (range from 5 to 40 nm)
Dramatically decrease desired properties
Solutions
Dispersing in Organic solvents
Dispersing with Surfactant Interaction
Functionalization of the SWNT
End
Sidewall
Noncovalent
Covalent
Characterization Techniques
Raman spectroscopy
Optical absorption
Transmission Electron Microscopy (TEM)
Functionalization = Defect
Nuclear Magnetic Resonance (NMR)
Nuclear Magnetic Resonance
NMR is a phenomenon which occurs when
the nuclei of certain atoms are immersed
in a static magnetic field and exposed to a
second oscillating magnetic field.55, 56
Neutrons, protons, and electrons posses
spin
This creates a magnetic field around the
nucleus
NMR background
Unpaired protons create NMR signals
Nucleus posses magnetic moment, μ,
given by the following:
I=spin; γ = gyromagentic ratio; h =
Planck’s const
Energy of NMR
Energy of particle is changing, which is
detected in NMR through the following
equation:
B is the strength of the magnetic field at
the nucleus
Transition state
E = - m B cos q
Spin – Lattice Relaxation
Given by T1 is dependent upon time for return
along z axis
Given by the following equation
Mz = Mo (1 - e-t/T1)
Provides structural information
Number of other similar atoms
Functional group information
Spin – Spin Relaxation
Spin-spin relaxation is found by the
following:
1/T2* = 1/T2 + 1/T2inhomo
Information given
Number of identical substituents
Position of probed atom in comparison to
other probed atoms
Current Applications: Noncovalent
Nakashima et al reported pyrene carrying ammonium ion
noncovalent sidewall functionalization, which was
determined by proton NMR.57
Li et al reported an interaction with the porphine THPP
and SWNT, which could been seen by peak
broadening.58
Wong and Banerjee formed a new type of Wilkinson’s
catalyst with SWNT and observed the mechanism with
1H, 31P, and 13C NMR.59
These noncovalent bonding methods are being utilized
to separate semiconducting from metallic SWNT,
building materials in aqueous solutions, and new
sources for catalyst material.
Covalent: Radicals
Covalently bonded SWNT are more prevalent
Radical reactions are one type of reaction
Umek et al reported the addition of carbon
radicals, which is confirmed with line broadening
in proton NMR.50
A photoinduced radical addition of perfluorinated
alkyl radicals to SWNT was monitored with 19F
NMR.60
Billups et al reports alkyl addition from radical
ions generated from varying salts; the material
was then characterized with solid state 13C
NMR.61
Covalent: Photosensitive and
Electrical circuits with single bonds
The protonation of SWNT induced by pH change
was observed in 13C NMR, which showed a
downfield shift and new peak.62
Zhang et al reported functionalizing SWNT with
aniline in a ratio 360:1 SWNT to aniline, which
structure is proven by with an chemical shift and
broadening of the proton NMR spectra.63
Silylation of SWNT was determined by an
downfield shift and broadening of peaks in 29Si
NMR.64
These materials are being utilized as
photosensor materials and electronic circuits
Covalent: cycloaddition
The classic cycloaddition, Diels-Alder reaction,
has been utilized to functionalize SWNT with oquinodimethane under microwave irradiation.65
Zhang et al has performed a similar Diels-Alder
reaction excepted the SWNT are fluorinated.66
The NMR proves the structure with broadening
of the peaks, chemical shift, and generation of
new peak.
These materials are the precursors for polymer
functionalization and photoelectrical materials.
Covalent: Nitrenes and Carbenes
Cycloaddtion
Holzinger et al has performed an extensive study
utilizing the cylcoaddition of nitrene with a large range of
R groups to SWNT. The 1H NMR displayed an upfield
shift and broadening of peaks from the starting
material.60,67
Nitrene cycloaddition is utilized to attach carborane
cages to the sidewalls of SWNTs. 13C NMR shows a
downfield shift, which is the result of the sp2 carbon
changing to sp3 carbon attached to an nitrogen.68
The Bingel Reaction was utilized to create a carbene,
which was tagged with fluorine and observed with 19F
NMR.69
Materials utilized new polymers, target drug for cancers,
and sensors, respectively
Covalent: 1, 3 dipolar addition
1, 3 dipolar addition of nitrile oxide.70
1,3 dipolar addition of nitrile amine.71
Both confirm with proton NMR
Peak broadening
Upfield shift
Photomaterials
Sensor
Voltaic cell
Conclusions
Determine Sidewall
Functionalization
through NMR
Peak broadening
Chemical Shift
New materials
Separations
Polymers
Drugs
Solar
Circuits
Catalyst
Future Work
Functionalized SWNT are proven to be an
essential part of several fields such as medical,
electronical, and mechanical.
The vast goal of utilizing NMR to characterize
SWNT is to identify the functional groups and
their structure, so the reaction conditions can be
tailored for specific target needs.
The refinement of characterization techniques
for functionalized SWNT is essential for these
materials to become the part of our everyday
life.
Acknowledgements
Dr. Grady, Dr. Cheville, Dr. Ford, and Dr.
Teeters
Dr. Reiten
Dr. Nelson
Heather Beem and Jason Watkins
My Family
References
Iijima, S. Nature 1991, 354, 56-58.
Iijima, S.; Ichihashi, T. Nature 1993, 363, 603-605.
a) Kishinevsky, S.; Nikitenko, S.; Pickup, D.; van-Eck, E.; Gedanken, A. Chem. Mater. 2002, 14, 4498-4501. b) Simon, F.;
Kramberger, Ch.; Pfeiffer, R.; Kuzmany, H.; Zólyomi, V.; Kürti, J.; Singer, P.; Alloul, H. Physical Review Letters. 2005, 95, 017401-1.
c) Romaneko, K.; Fonseca, A.; Dumonteil, S.; Nagy, J.; d’Espinose de Lacaillerie, J.; Lapina, O.; Fraissard, J. J. S.S. NMR., 2005,
28, 135-141. d) Kneller, J.; Soto, R.; Surber, S.; Colomer, J.; Fonseca, A.; Nagy, J.; Van Tendeloo, G.; Pietraβ, T. J. Am. Chem. Soc.
2000, 122, 10591-10597.
a) Wu, H.; Yang, Y.; Ma, C.; Kuan, H. J. Poly. Sci. 2005, 43, 6084-6094. b) Xu, M.; Huang, Q.; Chen, Q.; Pingsheng, G.; Sun, Z.
Chem. Phys. Let. 2003, 375, 598-604. c) Jiang, G.; Wang, L.; Chen, C.; Dong, X.; Chen, T.; Yu, H. Materials Letters. 2005, 59, 20852089.
a) Maurin, G.; Bousquet, C.; Henn, F.; Bernier, P.; Almairac, R.; Simon, B. Chem. Phys. Let. 1999, 312, 14-18. b) Marques, M.;
d’Avezac, M.; Mauri, F. APS 2006, 1, 0510197. c) Singer, P.; Wzietek, P.; Alloul, H.; Simon, F.; Kuzmany, H. APS 2006, 1, 0510195.
d) Zolyomi, V.; Rusznyák, A.; Kürti, J.; Gali, A.; Simon, F.; Kuzmany, H. Szabados, A.; Surján, P.
Zurek, E.; Autschabch, J. J. Am. Chem. Soc. 2004, 126, 13079-13088.
Besley, N.; Titman, J.; Wright, M. J. Am. Chem. Soc. 2005, 127, 17948-17953.
Marques, M.; d’Avezac, M.; Mauri, F. Physical Rev. B 2006, 73, 125433-1-125433-6.
Matsuo, Y.; Tahara, K.; Nakamura, E. Organic Letters 2003, 5, 3181-3184.
Latil, S.; Henrard, L.; Goze Bac, C.; Bernier, P.; Rubio, A. Physical Rev. Letters 2001, 86, 3160-3163.
Orendt, A. Encyclopedia of NMR 2002, 9, 551-558.
Tang, X.; Kleinhammes, A.; Shimoda, H.; Fleming, L. Science 2000, 288, 492-494.
Goze Bac, C.; Latil, S.; Vaccarini, L.; Bernier, P.; Gaveau, P.; Tahir, S.; Micholet, V.; Aznar, R.; Rubio, A.; Metenier, K.; Beguin, F.
Physical Rev. B 2001, 63, 100302-1-100302-4.
Hayashi, S.; Hoshi, F.; Ishikura, T.; Yumura, M.; Ohshima, S. Carbon 2003, 41, 3047-3056.
Urban, M.; Konya, Z.; Mehn, D.; Kiricsi, I. J. of Molecular Structure 2005, 744, 93-99.
Blackburn, J.; Yan, Y.; Engtrakul, C.; Parilla, P.; Jones, K.; Gennett, T.; Dillon, A.; Heben, M. Chem. Mater. 2006, 18, 2558-2566.
Perez-Cabero, M.; Rodriguez-Ramos, I.; Overweg, A.; Sobrados, I.; Sanz, J.; Guerrero-Ruiz, A. Carbon 2005, 43, 2631-2634.
Geng, H.; Zhang, X.; Mao, S.; Kleinhammes, A.; Shimoda, H.; Wu, Y.; Zhou, O. Chem. Phys. Let. 2004, 399, 109-113.
Shen, K.; Pietraβ, T. Applied Physics Letters 2004, 84, 1567.
Shen, K.; Curran, S.; Dewald, J.; Pietraβ, T. AIP Conf. Proceedings 2005, 786, 275-278.
Shen, K.; Pietraβ, T. Solid State NMR 2006, 29, 125-131.
Kleinhammes, A.; Mao, S.; Yang, X.; Tang, X.; Shimoda, H.; Lu, J.; Zhou, O.; Wu, Y. Physical Review B 2003, 68, 075418-1-0754186.
Ghosh, S.; Ramanathan, V.; Sood, A. Europhysics Letters 2004, 65, 678.
Clewett, C.; Pietraβ, T. J. Phys. Chem. B 2005, 109, 17907-17912.
References (cont)
Mao, S.; Kleinhammes, A.; Wu, Y. Chemical Physics Letters 2006, 421, 513.
Sekaneh, W.; Mrignayani, K.; Dettlaff-Weglikowska, U.; Veeman, W. Chemical Physics Letters 2006, 428, 143.
Matsuda, K.; Hibi, T.; Kadowaki, H.; Maniwa, Y. Physical Rev. B 2006, 74, 073415-1.
Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S. AIP Conference Proceedings 2005, 786, 202.
Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S. Bernier, P. AIP Conference Proceedings 2003, 685, 131.
Schmid, M.; Goze-Bac, C.; Kramer, S.; Roth, S.; Mehring, M.; Mathis, C.; Petit, P. Physcial Review B 2006, 74, 073416-1.
Shimoda, H.; Gao, B.; Tang, X.; Kleinhammes, A.; Fleming, L.; Wu, Y.; Zhou, O. Physical Review Letters 2002, 88, 015502-1.
Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S.; Bernier, P. AIP Conference Proceedings 2004, 723, 181.
Schmid, M.; Goze-Bac, C.; Mehring, M.; Roth, S.; Bernier, P. AIP Conference Proceedings 2003, 772, 135.
Gao, C.; Liu, M.; Huang, H.; Yin, G.; Xu, Z. Hanneng Cailio 2004, 12, 534.
Star, A.; Stoddart, J.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E.; Yang, X.; Chung, S-W.; Choi, H.; Heath, J. Angew. Chem. Int.
Ed. 2001, 40, 1721.
Kitaygorodskiy, A.; Wang, W.; Xie, S.; Lin, Y.; Fernando, S.; Wang, X.; Qu, L.; Chen, B.; Sun, Y. J. Am. Chem. Soc. 2005, 127, 7517.
Owens, F.; Jayakody, J.; Greenbaum, S. Composites Sci. and Tech. 2006, 66, 1280.
Sun, Y.; Huang, W.; Lin, Y.; Fu, K.; Kitaygorodskiy, A.; Riddle, L.; Yu, Y.; Carroll, D. Chem. Mater. 2001, 13, 2864.
Cahill, L.; Yao, Z.; Adronov, A.; Penner, J.; Moonoosawmy, K.; Kruse, P.; Goward, G. J. Phys. Chem. B 2004, 108, 11412.
Ju, S.; Utz, M.; Luo, Z.; Papadimitrakopoulos, F. Polymer Preprints 2005, 46, 209.
Qu, L.; Lin, Y.; Hill, D.; Zhou, B.; Wang, W.; Sun, X.; Kitaygorodskiy, A.; Suarez, M.; Connell, J.; Allard, L.; Sun, Y. Macromolecules
2004, 37, 6055.
Putz, K.; Mitchell, C.; Krishnamoorti, R.; Green, P. J. Poly. Sci. B 2004, 42, 2286.
Harris, P. A carbon nanotube page. http://www.personal.rdg.ac.uk/~scsharip/tubes.htm
Dresselhaus, M.; Dresselhaus, G.; Eklund, P.; Saito, R. Physics World online articlehttp://physicsweb.org/articles/world/11/1/9.
Chen, J.; Hamon, M. A.; Hu, H.; Cheng, Y.; Rao, A. M.; Eklund, P. C.; Haddon, R. C. Science 1998, 282, 95.
Barraza, H.; Pompeo, F.; O’Rear, E.; Resasco, D. Nano Lett. 2002, 2, 797.
Islam, M.; Rojas, E.; Bergey, D.; Johnson, A.; Yodh, A. Nano Lett. 2003, 3 (2), 269.
Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J.; Balzano, L.; Resasco, D. J. Phys. Chem. B 2003, 107, 13357.
Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
Umek, P.; Seo, J.; Hernadi, K.; Mrzel, A.; Pechy, P.; Mihailovic, D.; Forŕo, L. Chem. Mater. 2003, 15, 4751.
Bahr, J.; Tour, J. Chem. Mater. 2001, 13, 3823.
Dyke, C.; Tour, J. Nano Lett. 2003, 3, 1215.
Price, B.; Hudson, J.; Tour, J. J. Am. Chem. Soc. 2005, 127, 14867.
Dyke, C.; Tour, J. J. Am. Chem. Soc. 2003, 125, 1156.
References (cont)
Hornak, J. The Basics of NMR 2006 online: http://www.cis.rit.edu/htbooks/nmr/.
Unknown NMR Spectroscopy theory: http://teaching.shu.ac.uk/hwb/chemistry/tutorials/molspec/nmr1.htm.
Nakashima, N.; Tomonari, Y.; Murakami, H. Chem. Lett. 2002, 638.
Li, H.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Shiral Fernando, K.; Kumar, S.; Allard, L.; Sun, Y-P. J. Am. Chem.
Soc. 2004, 126, 1014.
Banerjee, S.; Wong, S. J. Am, Chem. Soc. 2002, 124, 8940.
Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.; Weiss, R.; Jellen, F. Angew. Chem. Int.
Ed. 2001, 40, 4002.
Liang, F.; Alemany, L.; Beach, J.; Billups, W. J. Am. Chem. Soc. 2005, 127, 13941.
Engtrakul, C.; Davis, M.; Gennett, T.; Dillon, A.; Jones, K.; Heben, M. J. Am. Chem. Soc. 2005, 127, 17548.
Zhang, J.; Wang, G.; Shon, Y-S.; Zhou, O.; Superfine, R.; Murray, R. J. Phys. Chem. B. 2003, 107, 3726.
Hemraj-Benny, T.; Wong, S. Chem. Mater. 2006, 18, 4827.
Delgado, J.; de la Cruz, P.; Langa, F.; Urbina, A.; Casado, J.; Navarrete, J. Chem. Commun. 2004, 2004,
1734.
Zhang, L.; Yang, J.; Edwards, C.; Alemany, L.; Khabasheka, V.; Barron, A. Chem. Commun. 2005, 2005, 3265.
Holzinger, M.; Abraham, J.; Whelan, P.; Graupner, R.; Ley, L.; Hennrich, F.; Kappes, M.; Hirsch, A. J. Am.
Chem. Soc. 2003, 125, 8566.
Yinghaui, Z.; Pneg, A.; Carpenter, K.; Maguire, J.; Hosmane, N.; Takagaki, M. J. Am. Chem. Soc. 2005, 127,
9875.
Coleman, K.; Bailey, S.; Fogden, S.; Green, M. J. Am. Chem. Soc. 2003, 125, 8722.
Alvaro, M.; Atienzar, P.; de la Cruz, P.; Delgado, J.; Garcia, H.; Langa, F. J. Phys. Chem. B 2004, 108, 12691.
Alvaro, M.; Atienzar, P.; de la Cruz, P.; Delgado, J.; Troiani, V.; Garcia, H.; Langa, F.; Palkar, A.; Echegoyen, L.
J. Am. Chem. Soc. 2006, 128, 6626.