Transcript Document

Lake Superior Region Carbon Cycle
Viewed from the air
Ankur R Desai
Atmospheric & Oceanic Sciences
University of Wisconsin-Madison
(and the CyCLeS team)
Lake Superior Biogeochemistry Workshop
Ankur R Desai, UW-Madison
August 5, 2008
[email protected]
What’s in the airwaves?
• Lakes, lands, & carbon
• The atmospheric tracer view
• An eddy flux view
• Lake Superior & micrometerology
Ankur R Desai, UW-Madison
[email protected]
Lakes, Land, &
Carbon
Ankur R Desai, UW-Madison
[email protected]
The big picture
• Sarmiento and Gruber, 2002, Physics Today
Ankur R Desai, UW-Madison
[email protected]
Slightly smaller picture
• Cardille et al. (2007)
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
[email protected]
Real Numbers Are Complicated
• Atmos. flux: ~3-12 Tg yr-1 - 35-140 gC m-2 yr-1
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
[email protected]
An Oceanic Lake
• CyCLeS: Cycling of Carbon in Lake Superior
• Adapt the MIT-GCM ocean model to simulate
physical and biogeochemical environment of
Lake Superior
• Physical model of temperature, circulation
– Mostly implemented
• Biogeochemical model of trace nutrients and
air-sea exchange
– In progress
Ankur R Desai, UW-Madison
[email protected]
Interesting Questions
• How do magnitudes of lake and land flux
compare and what does it imply for regional
carbon budgets? (NACP, SOCCR)
• Are interannual variations in lake and land
CO2 surface-atmosphere flux related and if so,
due to what environmental forcing?
• Can we “see” and constrain lake (and land)
flux from regional atmospheric CO2
observations?
• What are impacts on atmospheric forcing
(temperature, stable layer depth, CO2) on lake
biogeochemistry?
Ankur R Desai, UW-Madison
[email protected]
The Atmospheric
Tracer View
Ankur R Desai, UW-Madison
[email protected]
Global CO2
• NOAA/ESRL/GMD/CCGG
390
380
370
360
350
340
330
1980
Ankur R Desai, UW-Madison
1985
1990
1995
2000
2005
2010
[email protected]
Global Experiment
• Marland et al., DOE/CDIAC
8000
7000
6000
5000
4000
3000
2000
1000
0
1750
1800
T otal
S olid
Ankur R Desai, UW-Madison
1850
1900
G as
C ement
1950
2000
L iquid
G as Flare
[email protected]
The Inverse Idea
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
[email protected]
The Inverse Idea
• Courtesy S. Denning, CSU
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
[email protected]
The Inverse Idea
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
QuickTime™ and a
decompressor
are needed to see this picture.
• Peters
et al
(2007)
PNAS
[email protected]
Inversion and a Very Big Tower
•
•
•
•
WLEF-TV (PBS)
Park Falls, WI
447-m tall
6 levels [CO2]
– 11 to 396 m
• 3 levels CO2 flux
– 30,122,396 m
• Mixed landscape
– Representative?
• Running 1995-
Ankur R Desai, UW-Madison
[email protected]
A 1-point Inversion
• [CO2] Air flowing over lake > [CO2] over land
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
[email protected]
Air and Lake CO2 Comparison
• Simple boundary layer budget tracer study
suggests summer 2007 efflux: 4-14 gC m-2 d-1
– extrapolated to ~30-140 gC m-2 yr-1
– Analysis requires modeling of stable marine
boundary layer
– Larger than traditional air-sea pCO2 exchange
calculation
– Requires significant respiration in water column
– Urban et al. (in press)
Ankur R Desai, UW-Madison
[email protected]
The Boundary Layer Problem
• Courtesy of S. Spak, UW
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
[email protected]
Getting More Sophisticated
• Courtesy M. Uliasz, CSU
– Tracer transport modeled influence function August
2003 at WLEF
entire domain
1100
1000
land
900
water
1
1100
0.5
1000
0.1
1
900
0.05
0.5
800
0.01
0.1
700
0.005
0.05
600
0.001
0.01
500
0
0.005
1100
900
1
700
0.5
600
Y [km]
800
0.1
500
700
0.05
400
600
Y [km]
Y [km]
800
1000
0.01
300
500
0.005
200
200
400
300
400
500
600
0.001
700
X [km]
300
400
800
900
0.001
1000
1100
300
0
0
200
200
300
400
500
600
700
800
900
1000
1100
200
200
300
400
500
600
700
800
900
1000
1100
X [km]
X [km]
Ankur R Desai, UW-Madison
[email protected]
Great Lakes Influence at WLEF
1
• Land: 85.4%
0.8
0.6
0.4
• Lake Superior: 9.5%
0.2
LA N D
0
• Lake Michigan: 1.8%
1
LA K E S U P E R IO R
0.8
0.6
• Other water: 3.1%
0.4
0.2
0
Ankur R Desai, UW-Madison
[email protected]
The Potential
6
6
4
4
2
2
 C O 2 [p p m ]
 C O 2 [p p m ]
• Potential exists for constraining flux and
interannual var. with local observations of CO2
0
-2
-4
0
-2
-4
1996
-6
2003
-6
-8
-8
5
6
7
8
m on th s
Ankur R Desai, UW-Madison
9
10
11
5
6
7
8
9
10
11
m on th s
[email protected]
An Eddy Flux
View
Ankur R Desai, UW-Madison
[email protected]
Eddies?
• Tracers in boundary layer primarily transported
by turbulence
• Ensemble average turbulent equations of
motion and tracer concentration provide
information about the effect of random, chaotic
turbulence on the evolution of mean tracer
profiles with time
• In a quasi-steady, homogenous surface layer,
we can simplify this equation to infer the
surface flux of a tracer
Ankur R Desai, UW-Madison
[email protected]
Eddies!
Ankur R Desai, UW-Madison
[email protected]
The Maths
• *Some simplifications made…

Fc  a  wc 

c 
 t dz

0
Turbulent flux
h
Storage
Equipment:
• 3D sonic anemometer
• Open or closed path gas analyzer
• 5--20 Hz temporal resolution
• Multiple level CO2 profiler
Ankur R Desai, UW-Madison
[email protected]
The Data
Ankur R Desai, UW-Madison
[email protected]
The Data Pt. 2
Ankur R Desai, UW-Madison
[email protected]
The Data Pt. 3
Ankur R Desai, UW-Madison
[email protected]
Much Data…
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
[email protected]
A CHEAS-y Lake
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
[email protected]
Scale This!
Ankur R Desai, UW-Madison
[email protected]
Some Observations
Desai et al, 2008, Ag For Met
Ankur R Desai, UW-Madison
[email protected]
The 6x6 km View
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
QuickTime™ and a
decompressor
are needed to see this picture.
[email protected]
More Observations
Ankur R Desai, UW-Madison
[email protected]
Land History
Ankur R Desai, UW-Madison
[email protected]
Land History
• Have to account for age structure too
QuickTime™ and a
decompressor
are needed to see this picture.
Ankur R Desai, UW-Madison
[email protected]
All The ChEAS Flux Data
Quic kTime™ and a
dec ompr es sor
are needed to s ee this pic ture.
Ankur R Desai, UW-Madison
[email protected]
Magically Scaled
Quic kTime™ and a
dec ompr es sor
are needed to s ee this pic ture.
Ankur R Desai, UW-Madison
[email protected]
The “Bottom-Up” Flux
50
30
NEE gC m-2 mo-1
10
-10
-30
-50
-70
-90
-110
-130
-150
1989
1991
1993
1995
1997
1999
2001
2003
2005
2007
Year
Ankur R Desai, UW-Madison
[email protected]
Evaluation
• “Top-down” vs “Bottom-up”
Regional Flux
40
20
NEE gC m-2 mo-1
0
-20
-40
-60
-80
-100
-120
1997
1998
1999
2000
2001
2002
2003
2004
2005
Year
Flux towers
Ankur R Desai, UW-Madison
FIA Model
ABL Budget
[email protected]
Evaluation
Annual flux (NEE)
1997
1998
1999
2000
2001
2002
2003
2004
0
gC m-2 yr-1
-50
-100
Flux towers
FIA model
ABL Budget
-150
-200
-250
Year
Ankur R Desai, UW-Madison
[email protected]
Land
• 1989-2006 average
Mean NEE
40
20
gC m-2 mo-1
0
-20
-40
-60
-80
-100
1
2
3
4
5
6
7
8
9
10
11
12
Month
Ankur R Desai, UW-Madison
[email protected]
Lake?
Ankur R Desai, UW-Madison
[email protected]
Lake and Land
Cumulative NEE
150
100
gC m -2 m o-1
50
0
-50
-100
-150
-200
1
2
3
4
5
6
7
8
9
10
11
12
Month
Ankur R Desai, UW-Madison
[email protected]
Lake Superior &
Micrometeorology
Ankur R Desai, UW-Madison
[email protected]
Better Forcing?
• Many observations are sparse
Ankur R Desai, UW-Madison
[email protected]
Better [CO2]
390
385
380
375
370
365
360
355
350
345
340
1996
1997
Ankur R Desai, UW-Madison
1998
1999
2000
2001
2002
2003
2004
2005
2006
[email protected]
Coherent Interannual Variability
Quic kTime™ and a
dec ompres sor
are needed to s ee this pic tur e.
Ankur R Desai, UW-Madison
[email protected]
Lake Interannual Variability
Annual avg. dissolved organic carbon (DOC)
3.5
3
DOC (mgL-1)
2.5
2
1.5
1
0.5
0
1973
Ankur R Desai, UW-Madison
1983
1986
1987
1996
1997
2001
2005
[email protected]
More measurements
• [CO2] over Lake Superior
• Continuous CO2 eddy covariance on the lake
• Better models of stability over lakes
• Spatial atmospheric met data
– Temp, wind, precip?, shortwave radiation
Ankur R Desai, UW-Madison
[email protected]
Conclusions
• On annual and decadal timescales, Lake Superior is
possibly a source of CO2 to the atmosphere
• This source could be on the same order of magnitude
as the terrestrial regional sink
• Regional carbon budgets have to take lakes into
account
• We can estimate this flux from a number of techniques
• Lake models may need to worry about spatiotemporal
variability in atmospheric forcing
• Models to tie land carbon flows into lake carbon can
be useful for Lake Superior
• Model-data fusion/optimization/assimilation techniques
should be explored
Ankur R Desai, UW-Madison
[email protected]
Thanks
• Desai lab and friends: Ben Sulman, Jonathan Thom,
Shelley Knuth, Scott Spak
• ChEAS collaborators, esp. Bruce Cook, Paul Bolstad,
Ken Davis, D. Scott Mackay, Nic Saliendra, Sudeep
Samanta
• CyCLeS team: Galen McKinley, Noel Urban, Chin Wu,
Nazan Atilla, Val Bennington
• Funding: DOE NICCR, NSF, USDA, NSF/NCAR,
NASA, NOAA, under auspices of the North American
Carbon Program (NACP)
• Come visit us:
– AOSS 1549, [email protected], 265-9201
• More info:
– http://flux.aos.wisc.edu
Ankur R Desai, UW-Madison
[email protected]