Transcript Slide 1

Microplasma-on-a-chip Excited by
UHF and Microwave Frequency
Presented at the
2006 International Conference on Reactive Plasma
and Symposium on Plasma Processing
January 24 – 27, 2006
Jeff Hopwood, Northeastern University
Boston, Massachusetts, USA
OUTLINE
• Motivation: microplasma applications for sensors
• Background: types of microplasmas
• Microwave-excited microplasmas
– Design
– Diagnostics
– Operation in 1 atm. Air
• Conclusion
Motivation
(95 references)
Motivation for microplasma:
a miniature source of photons, ions and electrons
Optical Emission Spectrometry
Ion Mobility Spectrometry
Mass Spectrometry
- Verionix
- Alcatel
…several
research groups
power
gas
sample
-Ramsey Group
-Cruz et al NM-TuM3
light
mplasma optical spectrometer
- Eiceman Group
- R Miller (Sionex)
Background
Other Microplasma Concepts
• DC microplasma
– Ion erosion
+
…Manz Group
• DBD: high voltage, surface contamination(?)
• RF capacitively coupled microplasma
– Low efficiency (electron and ion loss, esp. mplasma)
• RF inductively coupled microplasma
– Ok, for low pressure
nm~w  0.01<p<10 torr at 0.5 GHz
…but free-standing coils are very lossy at f>1 GHz
A realistic Analytical Microplasma
should be…
•
•
•
•
•
•
low power
low voltage
long lifetime (repeatable)
low temperature
high intensity: high density of hot electrons
pressure
– industrial process monitor: rough vacuum,
possibly corrosive gases
– environmental sensors: atmospheric air
Microwave frequency
coplanar CCP
The microwave excitation must be symmetric, otherwise a self-bias will accelerate ions (similar to a plasma etcher).
massive ions do not respond
to microwave electric fields…
(w > wpi)
+
+
+/-
-/+
+
+
…electrons are partially
confined within the plasma:
Average displacement < 5 mm
Microwave Breakdown
Meek J.M. and Craggs J.D.,
“Electrical Breakdown of Gases”,
Wiley, New York, 1978 pp 697
Half-wave Split Ring Resonator (SRR):
Surface Current Simulation at 1.0 W
900 MHz
I
fro
V
V / I = 50W
GAP
fro
50 ohm INPUT
e=10
INPUT
ro=10mm
Dielectric
Ground Plane
Discharge gap
GAP
Portable Microplasma System
Split Ring Resonator
Power Amp
(GSM Band
Cell Phone,
4 watts)
VCO
(900MHz)
not shown: 6 v battery, power level control
Demonstration
1 atm air
3 watts - cell phone amplifier chip
Demonstration
1 atm air
gas detection spectrum
isopropyl alcohol
Demonstration
1 atm air
gas detection spectrum
(breath)
Optical Emission in Air at 1 atm
Rotational Temperature, Trot
0-2
(0.1% N2 in argon at 1 atm.)
Tgas  Trot = 400 K
Glass tube
1-3
Trot = 450 K
2-4
Microstrip
Trot = 400 K
Trot = 350 K
not an arc!
3680
3700
3720
3740
3760
Wavelength (Å)
3780
F. Iza and J. Hopwood IEEE TPS (2004)
3800
3820
Gas temperature at 1 atm
800
Trot (n=0)
Trot (n=1)
700
Trot (K)
Trot (n=2)
Argon + 0.1% N2
600
500
400
Argon microplasma
Gap = 500 um
Air
Microplasma
Gap = 25 um
300
0.0
0.5
1.0
1.5
2.0
Power (W)
2.5
3.0
3.5
Modeling
Electric Field Intensity
Egap > 12 MV/m
Microwave Capacitive Coupling with
SRR
microplasma ~ 25 mm
+Vosinwt
-Vosinwt
er=10
cross section
Rp
1/jwCS
1/jwCS
Minimal sputter erosion:
• DC gap voltage = 0
• 1/jwCs < Rp @ high pressure
• collisional sheaths
Lifetime Evaluation
25 mm discharge gap after 50 hrs. operating in open room air
microstrip line (Au)
25 mm gap
carbon deposition
Al2O3 substrate
Al2O3 substrate
false color optical micrograph
microstrip line(Au)
Microwave Capacitive Coupling
Rp
1/wCS
25
DC Microplasma
1/wCS
1250 mW
1000 mW
750 mW
500 mW
250 mW
150 mW
Floating Potential (V)
typical CCP
20
15
increasing
ne and Cs
10
Kolobov, et al
JAP (2002)
no sputter erosion
5
0
F. Iza et al
IEEE TPS (2003)
-5
0.1
1
10
100
1000
Pressure (torr)
(Vf measured with a 25 um gold wire inside a 500 um gap)
Electron Density Diagnostic
ne in argon, g=120mm
Power
est. size
ne 
2x1014
cm-3
Plasma Impedance
0.50W
-
13000 – j5500 ohms
0.75W
-
6500 – j2400 ohms
1.00W
-
4800 – j2000 ohms
1.25W
-
4100 – j1800 ohms
1.50W
-
3200 – j1350 ohms
F. Iza and J. Hopwood, Plasma Source Sci. Technol (2005)
Voltage Distribution within the Plasma
1 watt (@65% efficiency), 1 atm. argon
RP=
4.8kW
45sinwt
-45sinwt
1/jwCS
= -j1000W
1/jwCS
= -j1000W
microstrip
Cs = 0.17 pF
100V
Electrode
Bulk Plasma
Sheath1
Sheath2
50V
900 MHz
0V
-50V
-100V
0s
0.5ns
V(Va:+,Vb:-)
1.0ns
V(Db:2,Db:1)
1.5ns
2.0ns
2.5ns
-V(Da:1,Da:2)
V(Csa:1,Csb:2)
Time
3.0ns
3.5ns
4.0ns
4.5ns
5.0ns
SPICE simulation
Voltage Distribution vs. Frequency
100V
50V
100 MHz
Vp= 22 vpk
Vs= 88 Vpk
0V
-50V
-100V
0s
5ns
V(Va:+,Vb:-)
10ns
V(Db:2,Db:1)
V(Va:+,Vb:-)
0.5ns
V(Db:2,Db:1)
15ns
20ns
-V(Da:1,Da:2)
25ns
V(Csa:1,Csb:2)
Time
30ns
35ns
40ns
45ns
50ns
100V
50V
1800 MHz
Vp= 87 vpk
Vs= 16 vpk
0V
-50V
-100V
0s
1.0ns
-V(Da:1,Da:2)
V(Csa:1,Csb:2)
Time
1.5ns
2.0ns
2.5ns
KEY:
Electrode: 90v
Bulk Plasma
Sheath1
Sheath2
Internal E-Field Conclusions:
The applied voltage drops…
…across the sheath region in DC and RF microplasma
low E/p in bulk plasma, but large sheath fields
…across the bulk plasma in microwave microplasma
high E/p in bulk plasma
high electron energy
efficient ionization
low sheath voltages eliminate sputter erosion
Semiballistic Electron Heating:
Low power, non-equilibrium operation in atmospheric pressure air
wide gap 
low electric field +electron collisions 
Maxwellian distribution
1 atm Air: back-of-the-envelope calc.
le ~ 5 mm (hot e- at Tg=700 K)
gap = 25 mm
104
EL (eV)
Vgap ~ 80 volts (peak)
103
Ee = qVgap(le/g) ~ 16 eV (peak)
N2
102
Ar
Minimum ionization cost:
66 eV/electron
(Stoletov constant in air)
101
1
2
3
4
5 6 7 8 910
Te (eV)
narrow gap 
high electric field +few electron collisions 
Hot electrons
(bypasses low-lying molecular excitation of N2
Ave. Electron Energy in Atmospheric Pressure Air
vs.
gap size*
120um
50um
25 um
10 um
10
?
Ave. Electron Energy (eV)
8
6
4
*BOLSIG
2
calculation in
78%N2+21%O2+1%Ar
0
0
20
40
60
80
100
E/p (Volt cm-1 Torr-1)
120
140
Optical Emission in Air at 1 atm
Model: E/p ~ 50, <e> ~ 4.5 eV
Strong emission in the UV (El ~ 3-4 eV)
Comparision of Ionization Efficiency in
Air, Argon and Helium
120um
50um
25 um
10 um
Ionization Efficiency (%)
100
>0.25 watts
10
>2 watts
1
Air
Argon
Helium
X
0.1
0
X
20
40
60
80
100
E/p (V cm-1 torr-1)
120
140
Frequency Scaling
350 mW
100 mm discharge gap
1.8 GHz
0.9 GHz
1.8 GHz MSRR
2006 AVS Symposium
Rodriguez, Xue, and Hopwood
Frequency and Gap Comparisons
in He/N2
1400
1200
0.8 W
7065 A
5875.6 A
1000
H
6678 A
More H excitation
with 50 um gap
Intensity
900 MHz, 50um gap
800
600
900 MHz, 250um gap
400
Less N2(BA)
Excitation and more
He* at 1800 MHz
200
1800MHz, 100 um gap
0
4500
5000
5500
6000
Wavelength (A)
6500
7000
7500
Conclusion
• Microstrip Split-ring Resonators provide
– Simple, low cost atmospheric microplasma
– High intensity (ne ~ 1014 cm-3 per watt, Ar)
– Minimal ion erosion
• Symmetric excitation, VDC = 0
• Vsheath<<Vplasma due to 1/jwCs<Rp
• w >> w pi
• Air operation at 1 atm.
– Requires semiballistic electron heating to
minimize non-ionizing collisional losses
Acknowledgments
• Students
– Jun Xue (scaling)
– Istvan Rodriguez (cell phone power amp electronics, freq
scaling)
– John Nwagbaraocha (EM modeling)
– Dr. Felipe Iza…now at POSTECH, S. Korea (ring resonator
studies)
• Chris Doughty, Steven Coy, David Fenner
• This work was supported by the National Science
Foundation under Grants No. DMI-0078406, CCF0403460, Verionix, Inc., and Sionex, Inc.