Transcript Slide 1
Multi-Scale Simulation of Polymer Processing Kathryn Garnavish, David Kazmer, William Rousseau, & Yingrui Shang University of Massachusetts Lowell Consititutive Models 0 .9 8 0 .9 6 ◦Momentum v P z z x ◦Heat 100 10 T T T 2 C p v k 2 t x z 2 1 10 100 1000 0 .9 4 0 .9 2 0 M P a F itte d 2 0 M P a F itte d 4 0 M P a F itte d 6 0 M P a F itte d 8 0 M P a F itte d 1 0 0 M P a F itte d 1 2 0 M P a F itte d 1 4 0 M P a F itte d 1 6 0 M P a F itte d 1 8 0 M P a F itte d 2 0 0 M P a F itte d 0 .9 0 0 .8 8 ◦Relaxation 10 1.E+08 8 1.E+07 6 Exp. Fitted 1.E+06 4 WLF 1.E+05 G'-Exp. G"-Exp. G'-Fitted G"-Fitted 1.E+04 2 0 1.E+03 -2 0 .8 4 1.E+02 -4 0 .8 2 1.E+01 -6 0 .8 0 1.E+00 1.E-06 -8 0 .8 6 10000 0 50 100 Shear Rate (1/sec) ◦Viscoelasticity Log(aT) v 0 0 M P a E xp . 2 0 M P a E xp . 4 0 M P a E xp . 6 0 M P a E xp . 8 0 M P a E xp . 1 0 0 M P a E xp . 1 2 0 M P a E xp . 1 4 0 M P a E xp . 1 6 0 M P a E xp . 1 8 0 M P a E xp . 2 0 0 M P a E xp . 3 x 1.E+09 1 .0 0 1000 -3 t ◦Compressibility S p e c ific V o lu m e (1 0 m /k g ) ◦Viscosity G', G" (Pa) ◦Mass 150 200 250 300 350 1.E-03 o 1.E+00 1.E+03 1.E+06 20 1.E+09 σ P ( , T )I M ( t ) ( ) dG ( t ) ( ) h ( I 1 , I 2 ) m exp( n 1 1 ( t ) 1 C t ( ) ( t ) 0 2 2 m dt a i 1 gi T i 1 0 20 ( ) d 80 e 15 70 i Exp. Sim.--Total Sim.--Flow Sim.--Cooling 60 I 3) * ( t ) 1 t ( t ) ( ) I 3 ) (1 m ) exp( n 2 * 170 220 270 320 25 M ( t ) ( ) h ( I 1 , I 2 ) C t 120 Temperature ( oC) ◦Birefringence Optical Media 70 Frequency (rad/s) T e m p e ra tu re ( C ) 0 0 1 -4 Dnrz (×10 ) Develop & validate continuum polymer processing simulation with non-Newtonian, non-isothermal, compressible flow, and thermoviscoelasticity Literature review of atomistic modeling of boundary conditions Specification of performance measures and end-use requirements Implement atomistic heat transfer boundary conditions (2005/06) Implement atomistic wall slip boundary conditions (2005/06) Implement molecular dynamic simulation for rheological development (2006/07) Validate against molding and extrusion processes (2006/07) Improve & define future work (2007/08) Continuum Models Path Difference (nm) Research Tasks: Conventional (Continuum) Approach: Viscosity (Pa Sec) Research Goal: Develop and validate a multi-scale polymer processing simulation for concurrent engineering design and manufacturing process development 50 40 Total Flow Induced Thermally Induced 10 5 0 30 -5 -0.5 -0.4 -0.3 -0.2 -0.1 20 0 0.1 0.2 0.3 0.4 0.5 z/d 10 0 -10 Dn Publications: •Kathryn Elise Garnavish, An Investigation into Hesitation Defects from Oscillating B. Fan, D. O. Kazmer, W.C. Bushko, R. P. Thierault, A. J. Poslinski, Birefringence Prediction of Optical Media, Polymer Engineering & Science, v. 44, n. 4, April, 2004, p. 814-824. A.N. Smith and P. M. Norris, Microscale Heat Transfer, Chapter 18 of Heat Transfer Handbook, eds. A. Bejan and A. D., Kraus, John Wiley & Sons, 2003. K. S. Narayan* and A. A. Alagiriswamy, R. J. Spry, DC Transport Studies of poly(benzimida-zobenzophenanthroline) a ladder-type polymer, Physical Review B, v. 59, n. 15, p. 10054-8, 1999. Fritch, L.W., ABS Cavity Flow – Surface Orientation and Appearance Phenomena Related to the Melt Front, SPE Technical Papers, Vol. 21, 1979, pp. 15-20. J. S. Bergström and M. C. Boyce, Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity, Macromoleclues, Vol. 32, pp. 3795-3808, 2001. S. H. Anastasiadis and S. G. Hatzikiriakos, The Work of Adhesion of Polymer/Wall Interfaces and the Onset of Wall Slip, J. Rheol., v. 42, n. 4, p. 795-812, 1998. M. Doi, Challenges in polymer physics, Pure Appl. Chem., Vol. 75, No. 10, pp. 1395–1402, 2003. Atomistic Modeling of Heat Transfer D -20 d 23 28 33 38 43 48 53 58 Radius (mm) Atomistic Modeling of Wall Slip ◦Boltzmann Transport Equation ◦Wall slip condition characterized on ◦Modified Bose-Einstein distribution meso-scale / 1 to estimate Q=f(stress, compatibility,…) ◦On atomistic level, compare molecular strain to wall adhesive forces 11 22 W Atomistic Modeling of Rheology ◦Incorporation of MD simulation for rheological development < 1 1 No Slip Dirichlet Neumann Adiabatic 0.9 0.8 0.9 Atomistic 0.7 0.6 0.5 0.4 0.3 0.7 0.6 0.5 0.4 0.3 0.2 0.2 0.1 0.1 0 0 0 1 2 3 4 5 Time (sec) 6 7 8 Free Surface Atomistic 0.8 Dimensionless Inlet Pressure. References: C ( t ) ( ) Nano-Scale Investigation: Dimensionless Interface Temperature. Flows, Univ. of Mass. Lowell, Dept. Plastics Engineering, 2005. •William Rousseau, Effect of Shear Stress and Velocity Profile Development on Flow Bore Wall Slip, Univ. of Mass. Lowell, Dept. Plastics Engineering, 2005. •Bingfeng Fan and David Kazmer, Low Temperature Modeling of the TimeTemperature Shift Factor for Polycarbonate, Submitted to Advances in Polymer Technology. t 9 10 0 2 4 6 Time (sec) 8 10 Structural change of the microphase of ABA tri block polymers under elongation. ACKNOWLEDGEMENT: This research has been sponsored by the National Science Foundation under DMI-0425826.