Transcript General
GenBiLL Generic Biological Learning Laboratories Dr. Dieter W. Lorenz Dipl.–Inform. Alexander Rüegg Bielefeld University Department of Bioinformatics EDMEDIA, Honolulu © 2003 Outline GenBiLL: Generic Biochemical Learning Laboratories 1. Motivation 2. ViSeL: Virtual DNA Sequencing Laboratory E-Learning Concept Teachware Modules Field Test: Evaluation Results 3. Generic Approach: Laborator – The Laboratory Generator Aims Realization 4. Conclusion 5. Acknowledgement Aim of GenBiLL Generic Biological Learning Laboratories Laborator Laboratory Generator ViSeL Virtual Sequencing Lab WebXam Test Series Generator Production & Evaluation UniMuG Universal Multimedia Glossary ViSeL • Overview The Virtual DNA Sequencing Laboratory ViSeL • Tutorial ViSeL • Glossary ViSeL • Web Component ViSeL • Simulation Environment ViSeL • In Educational Use Students, Wegberg, Germany ViSeL • Overall Results Good Structure, arrangement and orientation within the whole learning environment (Ø2,2) Realistic and successful construction of the virtual lab Intuitive handling and easy drag & drop interaction within the lab simulation part Need for more visual feedback in the lab Desire for step by step explanation for each work step in the lab Obviously high motivating impact Fun factor was rated higher (Ø1,3) then potential use (Ø2,6) Large compensation of missing technical infrastructure Useful completion to theoretical and practical teaching (100%) Every person recommended the programme GenBiLL • Generic Developments Second Aim: Reduce enormous expenditure to create biochemical laboratory learning environments with generic methods. UniMuG Tool to create multimedia glossaries WebXam Tool to create learning target evaluations for the WWW Laborator Tool to create laboratory simulation environments Laborator • Lab Generator Aims: Based on the experiences collected during the production process of the ViSeL interactive laboratory module: Offer an object oriented framework (IDE) to design individual biochemical screen experiments on the fly. No programming skills necessary! Simulate quantities of thermodynamic parameters – T, p, [Ai], t,…. Provide the basic learning units and a large supply of laboratory objects and devices. Laborator • Realization Laboratory-Allocation-Frame L = ( T, O, U, aR, aI ) T = Theme O = Set of laboratory objects U = User Interaction aR = Rules for the behaviour of objects and chemicals aI = Optional rules for user interaction limitation (guided tour) Laborator • Realization Theme T Which working place? – Which Security Level? Laborator • Realization Laboratory Objects O ~ 90 predefined Objects (In German): Abdampfschale Abfalleimer Abtropfgestell Ampulle AnalyseStoffMelder Becher Becherglas Brutschrank Bunsenbrenner Chemikalienloeffel Destillationsgeraet Dispergiergeraet Dose Entsorgungskanne Eppendorfgefäss Erlenmeyerkolben Exsikkator Fass Flasche Gaswaschflasche Gefriertrockner Gluehschaelchen Gluehschiffchen Heizbad Heizhaube Heizofen Heizplatte Homogenisator Inkubationsschuettler Isolierkanne Kanister Kasserolle Kolbenprober Kuehltruhe Kuevette Kulturglas Laborloeffel Labormixer Loeffel Loeffelspatel Magnetrührer Mastercycler Messbecher Messkolben Messpipette Messzylinder Moerser MultiLineInfo Petrischale Petrischalendrehtisch Pipette Pipettenflasche Praeparateglas Reagenzglas Reaktionsgefaess Reinigungsautomat Rotationsverdampfer Rundkolben Saugflasche Saugrohr Schüttelgeraet Sicherheitsbehaelter Sicherheitsgefäss Spritze Spritzflasche Stahlschale Sterilisator Stutzenflasche Teclubrenner Teller Thermostat Tiegel Trennkammer Trockenschrank Tropfflasche UV_Lampe Uhrglasschale Vierkantbehaelter Vierkantflasche Vollpipette Wasserbad Weithalsbehälter Weithalsflasche Weithalsglas Zentrifuge Zentrifugenglas Zylinder Laborator • Realization User Interaction Interpreter U ragApplet D ule R Lab ule Interpreter R 1..* +Infere( obj1: object): void < u se s> ule CelsInEppiR > < <i nst ant i ate s>> .... .* 0. ragObject D j ct Obe Substance +action(obj1 obj2: Dr < Gray-colored region: Core elements of the generic laboratory model, containing all essential rules for interpretation of user interactions. > > <<execut es 0..* Vessel <<uses>> 0..* 2 evice D D Interact 1..* Laborator • Realization Rule Interpreter for aR , aI Combining Operator: Combining Operator: AND (N)AND/(N)OR Conditions Actions Actions AND Conditions Laborator • Realization Interface for aR , aI Laborator • Bringing it all together VLML – Virtual Laboratory Markup Language 1 <model name="isolation-laboratory"> 2 <listOfCompartments> 3 <compartment type="vessel"> 4 <name>eppendorf-tube</name> 5 ... 6 <listOfSubstances> 7 <substance name="E1" pH-value="4.5"> 8 <stateOfAggregation>liquid</stateOfAggregation> 9 <quantity unit=”mol”>0.1</quantity> 10 ... 11 </substance> 12 ... 13 </listOfSubstances> 14 </compartment> 15 ... 16 </listOfCompartments> 17 <listOfRules> 18 <rule type="interaction"> 19 <name> Fill-E1-in-Eppendorf</name> 20 ... 21 </rule> 22 ... 23 <rule type="reaction"> 24 <name>E1+E2->P1</name> 25 ... 26 </rule> 27 ... 28 </listOfRules> 29 </model> Laborator • Creating New Labs Carry out the following steps: 1. Define the set of devices and instruments participating the work process 2. Define the set of receptacles and containers participating the work process 3. Define initial parameters for devices and receptacles 4. Define the set of chemical substances in certain receptacles 5. Define reaction rules depending on chemical substances and thermodynamic parameters 6. Define rules for guided tour (Optional) 7. Use Laborator-IDE Laborator • IDE Laborator • Example Isolation Lab – WWW-Version 1.0 GenBiLL • Conclusions 1. Virtual learning laboratory environments can help to improve the quality of education: personalized training, time independence, higher motivation and resource saving. 2. To what extend methodical competence is encouraged still has to be verified in comparative evaluations. 3. In any case: Students learning success depends on embedding this kind of media into a wise curriculum. 4. To reduce the high amount of human and financial endeavour flowing in the development of such learning environments suitable generic tools have been successfully invented. 5. With Laborator it is possible to build up platform independent, highly interactive biochemical laboratory experiments in accurate time without any programming skills. 6. We consider GenBiLL as a major step into systematic generic construction of virtual laboratories for different scientific fields. Acknowledgement Prof. Dr. R. Giegerich Prof. Dr. R. Hofestädt Prof. Dr. Alf Pühler Dipl.- Inform. A. Dieckmann Prof. Dr. W. Pipersberg M. Egerding and his Students Prof . Dr. U. B. Priefer T. Schmidt Prof. Dr. A. Steinbüchel Dipl. Inform M. Niemann Dr. C. Schleiermacher Dr. T. Nattkemper Dr. W. Arnold Dipl. Inform. S. Lorenz Dipl. Inform. A. Reckmeyer T. Kugel Dipl. Inform C. Rezazadeh (FH) And all the others... Thank You! Any Questions? www.vlab.de Dr. Dieter W. Lorenz Dipl.–Inform. Alexander Rüegg Bielefeld University Department of Bioinformatics EDMEDIA, Honolulu © 2003