Transcript General

GenBiLL
Generic Biological Learning Laboratories
Dr. Dieter W. Lorenz
Dipl.–Inform. Alexander Rüegg
Bielefeld University
Department of Bioinformatics
EDMEDIA, Honolulu © 2003
Outline
GenBiLL: Generic Biochemical Learning Laboratories
1.
Motivation
2.
ViSeL: Virtual DNA Sequencing Laboratory
 E-Learning Concept
 Teachware Modules
 Field Test: Evaluation Results
3.
Generic Approach: Laborator – The Laboratory Generator
 Aims
 Realization
4.
Conclusion
5.
Acknowledgement
Aim of GenBiLL
Generic Biological Learning Laboratories
Laborator
Laboratory Generator
ViSeL
Virtual Sequencing Lab
WebXam
Test Series Generator
Production & Evaluation
UniMuG
Universal Multimedia Glossary
ViSeL • Overview
The Virtual DNA Sequencing Laboratory
ViSeL • Tutorial
ViSeL • Glossary
ViSeL • Web Component
ViSeL • Simulation Environment
ViSeL • In Educational Use
Students, Wegberg, Germany
ViSeL • Overall Results
 Good Structure, arrangement and orientation within the whole learning
environment (Ø2,2)
 Realistic and successful construction of the virtual lab
 Intuitive handling and easy drag & drop interaction within the lab simulation part
 Need for more visual feedback in the lab
 Desire for step by step explanation for each work step in the lab
 Obviously high motivating impact
 Fun factor was rated higher (Ø1,3) then potential use (Ø2,6)
 Large compensation of missing technical infrastructure
 Useful completion to theoretical and practical teaching (100%)
 Every person recommended the programme
GenBiLL • Generic Developments
Second Aim:
Reduce enormous expenditure to create biochemical laboratory
learning environments with generic methods.
UniMuG
Tool to create multimedia glossaries
WebXam
Tool to create learning target evaluations for the WWW
Laborator
Tool to create laboratory simulation environments
Laborator • Lab Generator
Aims:
Based on the experiences collected during the production process
of the ViSeL interactive laboratory module:
Offer an object oriented framework (IDE) to design individual
biochemical screen experiments on the fly. No programming skills
necessary!
Simulate quantities of thermodynamic parameters – T, p, [Ai], t,….
Provide the basic learning units and a large supply of laboratory
objects and devices.
Laborator • Realization
Laboratory-Allocation-Frame
L = ( T, O, U, aR, aI )
T = Theme
O = Set of laboratory objects
U = User Interaction
aR = Rules for the behaviour of objects and chemicals
aI = Optional rules for user interaction limitation (guided tour)
Laborator • Realization
Theme T
Which working place? – Which Security Level?
Laborator • Realization
Laboratory Objects O
~ 90 predefined Objects (In German):
Abdampfschale
Abfalleimer
Abtropfgestell
Ampulle
AnalyseStoffMelder
Becher
Becherglas
Brutschrank
Bunsenbrenner
Chemikalienloeffel
Destillationsgeraet
Dispergiergeraet
Dose
Entsorgungskanne
Eppendorfgefäss
Erlenmeyerkolben
Exsikkator
Fass
Flasche
Gaswaschflasche
Gefriertrockner
Gluehschaelchen
Gluehschiffchen
Heizbad
Heizhaube
Heizofen
Heizplatte
Homogenisator
Inkubationsschuettler
Isolierkanne
Kanister
Kasserolle
Kolbenprober
Kuehltruhe
Kuevette
Kulturglas
Laborloeffel
Labormixer
Loeffel
Loeffelspatel
Magnetrührer
Mastercycler
Messbecher
Messkolben
Messpipette
Messzylinder
Moerser
MultiLineInfo
Petrischale
Petrischalendrehtisch
Pipette
Pipettenflasche
Praeparateglas
Reagenzglas
Reaktionsgefaess
Reinigungsautomat
Rotationsverdampfer
Rundkolben
Saugflasche
Saugrohr
Schüttelgeraet
Sicherheitsbehaelter
Sicherheitsgefäss
Spritze
Spritzflasche
Stahlschale
Sterilisator
Stutzenflasche
Teclubrenner
Teller
Thermostat
Tiegel
Trennkammer
Trockenschrank
Tropfflasche
UV_Lampe
Uhrglasschale
Vierkantbehaelter
Vierkantflasche
Vollpipette
Wasserbad
Weithalsbehälter
Weithalsflasche
Weithalsglas
Zentrifuge
Zentrifugenglas
Zylinder
Laborator • Realization
User Interaction Interpreter U
ragApplet
D
ule
R
Lab
ule Interpreter
R
1..*
+Infere(
obj1: object): void
< u
se
s>
ule
CelsInEppiR
>
< <i nst ant i ate s>>
....
.*
0.
ragObject
D
j ct
Obe
Substance
+action(obj1
obj2: Dr
<
Gray-colored region:
Core elements of the
generic laboratory model,
containing all essential rules for
interpretation of user interactions.
> >
<<execut es
0..*
Vessel
<<uses>>
0..*
2
evice
D
D
Interact
1..*
Laborator • Realization
Rule Interpreter for aR , aI
Combining
Operator:
Combining
Operator:
AND
(N)AND/(N)OR
Conditions
Actions
Actions AND Conditions
Laborator • Realization
Interface for aR , aI
Laborator • Bringing it all together
VLML – Virtual Laboratory Markup Language
1 <model name="isolation-laboratory">
2
<listOfCompartments>
3
<compartment type="vessel">
4
<name>eppendorf-tube</name>
5
...
6
<listOfSubstances>
7
<substance name="E1" pH-value="4.5">
8
<stateOfAggregation>liquid</stateOfAggregation>
9
<quantity unit=”mol”>0.1</quantity>
10
...
11
</substance>
12
...
13
</listOfSubstances>
14
</compartment>
15
...
16
</listOfCompartments>
17
<listOfRules>
18
<rule type="interaction">
19
<name> Fill-E1-in-Eppendorf</name>
20
...
21
</rule>
22
...
23
<rule type="reaction">
24
<name>E1+E2->P1</name>
25
...
26
</rule>
27
...
28
</listOfRules>
29 </model>
Laborator • Creating New Labs
Carry out the following steps:
1. Define the set of devices and instruments participating the work process
2. Define the set of receptacles and containers participating the work process
3. Define initial parameters for devices and receptacles
4. Define the set of chemical substances in certain receptacles
5. Define reaction rules depending on chemical substances and
thermodynamic parameters
6. Define rules for guided tour (Optional)
7. Use Laborator-IDE
Laborator • IDE
Laborator • Example
Isolation Lab – WWW-Version 1.0
GenBiLL • Conclusions
1.
Virtual learning laboratory environments can help to improve the quality
of education: personalized training, time independence, higher
motivation and resource saving.
2.
To what extend methodical competence is encouraged still has to be
verified in comparative evaluations.
3.
In any case: Students learning success depends on embedding this kind
of media into a wise curriculum.
4.
To reduce the high amount of human and financial endeavour flowing in
the development of such learning environments suitable generic tools
have been successfully invented.
5.
With Laborator it is possible to build up platform independent, highly
interactive biochemical laboratory experiments in accurate time without
any programming skills.
6.
We consider GenBiLL as a major step into systematic generic
construction of virtual laboratories for different scientific fields.
Acknowledgement
Prof. Dr. R. Giegerich
Prof. Dr. R. Hofestädt
Prof. Dr. Alf Pühler
Dipl.- Inform. A. Dieckmann
Prof. Dr. W. Pipersberg
M. Egerding and his Students
Prof . Dr. U. B. Priefer
T. Schmidt
Prof. Dr. A. Steinbüchel
Dipl. Inform M. Niemann
Dr. C. Schleiermacher
Dr. T. Nattkemper
Dr. W. Arnold
Dipl. Inform. S. Lorenz
Dipl. Inform. A. Reckmeyer
T. Kugel
Dipl. Inform C. Rezazadeh (FH)
And all the others...
Thank You!
Any Questions?
www.vlab.de
Dr. Dieter W. Lorenz
Dipl.–Inform. Alexander Rüegg
Bielefeld University
Department of Bioinformatics
EDMEDIA, Honolulu © 2003