Introduction to Digital Logic
Download
Report
Transcript Introduction to Digital Logic
Digital Signal Processing
Prof. Nizamettin AYDIN
[email protected]
http://www.yildiz.edu.tr/~naydin
1
Digital Signal Processing
Lecture 7
Fourier Series & Spectrum
2
READING ASSIGNMENTS
• This Lecture:
– Fourier Series in Ch 3, Sects 3-4, 3-5 & 3-6
• Replaces pp. 62-66 in Ch 3 in DSP First
• Notation: ak for Fourier Series
• Other Reading:
– Next Lecture: Sampling
4
LECTURE OBJECTIVES
• ANALYSIS via Fourier Series
– For PERIODIC signals: x(t+T0) = x(t)
ak
1
T0
T0
x (t )e
j ( 2 k / T0 ) t
dt
0
• SPECTRUM from Fourier Series
– ak is Complex Amplitude for k-th Harmonic
5
SPECTRUM DIAGRAM
• Recall Complex Amplitude vs. Freq
ak
4e
j / 2
–250
7e
j / 3
10
7e
j / 3
4e
a0
–100
N
0
x(t ) a0 ak e
k 1
ak Ak e
1
2
100
j 2 f k t
j / 2
250
j 2 f k t
ak e
j k
f (in Hz)
6
Harmonic Signal
x (t )
ak e
j 2 k f 0 t
k
PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:
2
2 f 0 0
T0
1
or T0
f0
7
Example
x(t ) sin (3 t )
3
j j 9 t 3 j j 3 t 3 j j 3 t j j 9 t
x ( t ) e
e
e
e
8
8
8
8
8
Example
x(t ) sin (3 t )
3
j j 9 t 3 j j 3 t 3 j j 3 t j j 9 t
x ( t ) e
e
e
e
8
8
8
8
In this case, analysis
just requires picking
off the coefficients.
k 3
ak
k 1
k 1
k 3
9
STRATEGY: x(t) ak
• ANALYSIS
– Get representation from the signal
– Works for PERIODIC Signals
• Fourier Series
– Answer is: an INTEGRAL over one period
ak
1
T0
T0
x (t )e
j 0k t
dt
0
10
FS: Rectified Sine Wave {ak}
T0
1
ak
T0
ak
j ( 2 / T0 ) kt
x
(
t
)
e
dt
( k 1)
0
Half-Wave Rectified Sine
T0 / 2
j ( 2 / T0 ) kt
2
sin(
t
)
e
dt
T
1
T0
0
0
T0 / 2
1
T0
0
e j ( 2 / T0 ) t e j ( 2 / T0 ) t j ( 2 / T0 ) kt
e
dt
2j
T0 / 2
1
j 2T0
e j ( 2 / T0 )( k 1) t dt
T0 / 2
1
j 2T0
0
e
j ( 2 / T0 )( k 1) t
e j ( 2 / T0 )( k 1) t dt
0
T0 / 2
j 2T0 ( j ( 2 / T0 )( k 1))
0
e
j ( 2 / T0 )( k 1) t
T0 / 2
j 2T0 ( j ( 2 / T0 )( k 1))
0
11
FS: Rectified Sine Wave {ak}
ak
e
j 2T0 ( j ( 2 / T0 )( k 1))
1
4 ( k 1)
1
4 ( k 1)
T0 / 2
j ( 2 / T0 )( k 1) t
e
e
k 1 ( k 1)
4 ( k 2 1)
0
j ( 2 / T0 )( k 1)T0 / 2
j ( k 1)
1
e
j 2T0 ( j ( 2 / T0 )( k 1))
0
1 4 (1k 1) e j ( 2 / T0 )( k 1)T0 / 2 1
1
4 ( k 1)
e
j ( k 1)
0
1
k
(1) 1 ?j 4
1
( k 2 1)
T0 / 2
j ( 2 / T0 )( k 1) t
1
k odd
k 1
k even
12
SQUARE WAVE EXAMPLE
1T
1
0
t
2 0
x (t )
1T t T
0
0
2 0
for T0 0.04 sec.
x(t)
1
–.02
0
.01
.02
0.04
t
13
Fourier Coefficients ak
• ak is a function of k
– Complex Amplitude for k-th Harmonic
– This one doesn’t depend on the period, T0
1
j k
k
1 ( 1)
ak
0
j 2 k
1
2
k 1,3,
k 2,4,
k 0
16
Spectrum from Fourier Series
0 2 /(0.04) 2 (25)
j
k
ak 0
12
k 1,3,
k 2,4,
k 0
17
Fourier Series Synthesis
16Kasim2k11
• HOW do you APPROXIMATE x(t) ?
ak
T0
1
T0
x (t )e
j ( 2 / T0 ) k t
dt
0
• Use FINITE number of coefficients
x (t )
N
ak e
j 2 k f 0 t
ak ak*
when x(t ) is real
k N
18
Fourier Series Synthesis
19
Synthesis: 1st & 3rd Harmonics
1 2
2
y (t ) cos( 2 ( 25)t 2 )
cos( 2 (75)t 2 )
2
3
20
Synthesis: up to 7th Harmonic
1 2
2
2
2
y (t ) cos( 50 t 2 )
sin(150 t )
sin( 250 t )
sin( 350 t )
2
3
5
7
21
Fourier Synthesis
1 2
2
x N (t ) sin(0t )
sin( 30t )
2
3
22
Gibbs’ Phenomenon
• Convergence at DISCONTINUITY of x(t)
– There is always an overshoot
– 9% for the Square Wave case
23
Fourier Series Demos
• Fourier Series Java Applet
– Greg Slabaugh
• Interactive
– http://users.ece.gatech.edu/mcclella/2025/Fsdemo_Slabaugh/fourier.html
• MATLAB GUI: fseriesdemo
– http://users.ece.gatech.edu/mcclella/matlabGUIs/index.html
24
fseriesdemo GUI
25