Recent Developments in Multi

Download Report

Transcript Recent Developments in Multi

Orbitrap Mass Analyser - Overview and
Applications in Proteomics
Alexander Makarov, Michaela Scigelova
Thermo Electron Corporation
Outline
• Orbitrap mass analyser
• Linking orbitrap to linear ion trap
• Flexibility of use of LTQ Orbitrap
• Focus on:
–High resolution
–Sensitivity
–Speed
–Dynamic range
• Conclusion
2
Principle of Trapping in the Orbitrap
• The Orbitrap is an ion trap – but there are no
RF or magnet fields!
• Moving ions are trapped around an electrode
- Electrostatic attraction is compensated by
centrifugal force arising from the initial tangential
velocity
• Potential barriers created by end-electrodes
confine the ions axially
• One can control the frequencies of oscillations
(especially the axial ones) by shaping the
electrodes appropriately
• Thus we arrive at …
Orbital traps
Kingdon (1923)
3
Orbitrap – Electrostatic Field Based
Mass Analyser


k 2
U (r , z )   z  r 2 / 2  Rm2  ln( r / Rm )
2
r
z
φ
Korsunskii M.I., Basakutsa V.A. Sov. Physics-Tech. Phys. 1958; 3: 1396.
Knight R.D. Appl.Phys.Lett. 1981, 38: 221.
Gall L.N.,Golikov Y.K.,Aleksandrov M.L.,Pechalina Y.E.,Holin N.A. SU Pat. 1247973, 1986.
4
Ion Motion in Orbitrap
• Only an axial frequency
does not depend on initial
energy, angle, and position
of ions, so it can be used
for mass analysis
• The axial oscillation
frequency follows the
formula
k

m/ z
w
k
m/z
5
A.A. Makarov, Anal. Chem. 2000, 72: 1156-1162.
A.A. Makarov et al., Anal. Chem. 2006, 78: 2113-2120.
= oscillation frequency
= instrumental const.
= …. what we want!
Ions of Different m/z in Orbitrap
• Large ion capacity stacking the rings
• Fourier transform needed
to obtain individual
frequencies of ions of
different m/z
6
How Big Is Orbitrap?
7
Getting Ions into the Orbitrap
• The “ideal Kingdon” field has been known since
1950’s, but not used in MS. Why?
There is a catch
– how to get ions into it ?
• Ions coming from the outside into a static electric field
will zoom past, like a comet from the outer space flies
through a solar system
• The catch:
The field must not be static when ions come in!
– A potential barrier stopping the ions before they reach an
electrode can be created by lowering the central electrode
voltage while ions are still entering
• Thus we arrive at the principle of
Electrodynamic Squeezing
8
A.A. Makarov, Anal. Chem. 2000, 72: 1156-1162.
A.A. Makarov, US Pat. 5,886,346, 1999.
A.A. Makarov et al., US Pat. 6,872,938, 2005.
Curved Linear Trap (C-trap) for ‘Fast’ Injection
• Ions are stored and cooled in the RF-only
C-trap
Lenses
• After trapping the RF is ramped down and DC
voltages are applied to the rods, creating a field
across the trap that ejects along lines
converging to the pole of curvature (which
coincides with the orbitrap entrance). As ions
enter the orbitrap, they are picked up and
squeezed by its electric field
Orbitrap
• As the result, ions stay concentrated (within
1 mm3) only for a very short time, so space
charge effects do not have time to develop
Push
Trap
Gate
Pull
Deflector
• Now we can interface the orbitrap to whatever
we want!
9
A.A. Makarov et al., US Pat. 6,872,938, 2005.
A. Kholomeev et al., WO05/124821, 2005.
Outline
• Orbitrap mass analyser
• Linking orbitrap to linear ion trap
• Flexibility of use of LTQ Orbitrap
• Focus on:
–High resolution
–Sensitivity
–Speed
–Dynamic range
• Conclusion
10
Linking Linear Trap with Orbitrap
• Combining the features of the Finnigan LTQ…
– ESI, nanospray, APCI, APPI ionsation methods
– outstanding sensitivity
– MSn operation
– Ruggedness and ease of use It adds capabilities for the most
demanding analyses
• …with excellent performance of orbitrap
– High resolution
– Accurate mass determination
It is fast - even with high resolution/accurate mass detection
11
LTQ Orbitrap Operation Principle
1. Ions are stored in the Linear Trap
2. …. are axially ejected
3. …. and trapped in the C-trap
4. …. they are squeezed into a small cloud and injected into the Orbitrap
5. …. where they are electrostatically trapped, while rotating around the central electrode
and performing axial oscillation
The oscillating ions induce an image current into the two
outer halves of the orbitrap, which can be detected using
a differential amplifier
Ions of only one mass generate a sine
wave signal
12
How Big Is LTQ Orbitrap?
13
What LTQ Orbitrap Delivers
• Mass resolution
> 60,000 at m/z 400 at 1 sec cycle
• Max. resolution
over 100,000 (FWHM)
• Mass accuracy
< 5 ppm external calibration
• Mass accuracy
< 2 ppm internal calibration
• Mass range
50 – 2,000; 200 – 4,000
• Sensitivity
sub-femtomole on column
• Throughput
4 scans per second
(1 high-resolution scan in the orbitrap
+ 3 MS/MS scans in the LTQ)
14
Outline
• Orbitrap mass analyser
• Linking orbitrap to linear ion trap
• Flexible method design for LTQ Orbitrap
• Focus on:
–High resolution
–Sensitivity
–Speed
–Dynamic range
• Conclusion
15
MS/MS with precursor accurate mass only
Setup for highest MS/MS productivity
Cycle time 1 second
SE1
Full Scan
MS
SE2
MS/MS
SE3
MS/MS
SE4
MS/MS
1 LTQ Orbitrap high resolution full scan
and in parallel
3 low resolution ion trap MS/MS scans
16
SE denotes a ‘scan event’
“All-round accurate mass” MS/MS methods
Setup for high mass accuracy
Cycle time 2 seconds
SE1
Full Scan
MS
SE2
MS/MS
SE3
MS2 (or MS3)
MS2
SE4
(or MS3)
1 LTQ Orbitrap high resolution full scan
and sequentially
3 high resolution LTQ Orbitrap MS/MS scans
External mass calibration
17
“All-round accurate mass” MS/MS methods
Setup for highest mass accuracy
Cycle time 2.2 seconds
SE1
Full Scan
MS
SE2
MS/MS
MS2
SE3
(or MS3)
MS2
SE4
(or MS3)
1 LTQ Orbitrap high resolution full scan
and sequentially
3 high resolution LTQ Orbitrap MS/MS scans
Internal mass calibration
18
Various combinations of MS/MS methods
SE1
Full Scan
MS
Example: phosphopeptides analysis
SE2
MS/MS
SE4
MS/MS
SE3
MS3
SE5
MS3
1 Orbitrap high resolution full scan
and
{ high resolution Orbitrap MS/MS scan
and neutral loss triggered
Low-resolution ion trap MS3 scan }
x2
External mass calibration
19
Precursor phosphopeptides
m/z 831: -S1 Casein 121-134; m/z 1031: -Casein 33-48
Orbitrap detector
PP_28092005_10-POS#22-49 RT: 0.31-0.70 AV: 14 NL: 5.93E3
F: FTMS + p NSI Full ms [ 800.00-1800.00]
z=2
1031.42128, + 3.3 ppm
100
95
90
85
830.90315
80
75
831.40519
70
60
55
50
45
40
35
30
25
20
15
10
5
0
800
831.90689
z=2
830.90313, + 2.5 ppm
Relative Abundance
65
832.4078
7
830.0 831.0 832.0 833.0 834.0 835.0
m/z
1042.91402
z=2
1032.42430
1032.92600
1031.0
1032.0
1033.0
m/z
841.89392
z=2
1050.89741
z=2
1062.38000
z=2
850
900
950
1000
m/z
20
1031.92296
1031.42128
Samples: Dr. Martin Larsen, Prof. Ole N Jensen
University of Southern Denmark
1050
1100
1150
1034.0
MS/MS of m/z 1031 FQS*EEQQQTEDELQDK
Orbitrap detector
982.43205
100
95
90
85
80
Neutral loss
exactly detected
982.4320
75
+2.7 ppm
70
Relative Abundance
65
977.43825
60
55
50
45
40
976
35
977
978
979
980
981 982
m/z
983
984
985
986
30
25
20
15
10
5
0
400
600
800
1000
1200
m/z
S* denotes dehydroalanine
21
1400
1600
1800
2000
MS3 of m/z 982
triggered upon the accurate neutral loss detection
Linear ion trap detector
672.3
100
95
90
85
328.1
632.5
747.3
80
75
1619.6
632.4
70
836.9
65
Relative Abundance
1620.7
965.8
876.3
965.0
1332.2
1619.5
965.9
60
1818.6
55
836.8
50
827.8
40
35
25
20
503.3
345.2
1689.7
964.8
1089.3
1105.5
900.4
544.8
584.3
1817.4
1361.6
1087.2
45
30
1216.5
966.3
1234.3
1490.7
1106.5
390.2
456.3
1070.9
15
1198.7
1281.3
1461.5
1574.8
1702.3
1817.3 1820.7
1715.4
968.0
1836.3
10
5
1836.6
0
400
600
800
1000
1200
m/z
22
1400
1600
1800
Interpretation of fragments from MS3 experiment
Complete y and b series
are observed
23
Outline
• Orbitrap mass analyser
• Linking orbitrap to linear ion trap
• Flexibility of use of LTQ Orbitrap
• Focus on:
–High resolution and mass accuracy
–Sensitivity
–Speed
–Dynamic range
• Conclusion
24
High Resolution &
Accurate Mass
.. confident ID, PTMs, de novo sequencing,
top-down
25
High Mass Resolution and Accurate Mass
(in 1 second)
NOTE: All mass accuracies in this presentation are with external calibration
312.12181
theoretical
R= 82,000
measured
26
312.13272
+ 0.7 ppm
High Masses and Mass Accuracy:
Apomyoglobin, charge state 10+
1696.10560
1696.20570
100
measured
90
80
1696.30552
1695.80587
70
NL:
1.97E6
MYO_1#245-350 RT:
4.05-7.12 AV: 104 T: FTMS
+ p ESI SIM ms [
1683.50-1708.50]
1696.40580
60
40
All mass accuracies < 2 ppm
1696.50579
50
1695.60576
30
1696.70597
1696.80571
1697.00309
20
10
90
80
70
NL:
1.19E5
1696.10651
1696.20677
1695.90599
1696.30703
100
1695.80572
theoretical
1696.40729
60
50
1695.70545
1696.50755
40
30
1696.60780
1695.60518
1696.70805
20
1696.80830
10
1697.00881
1695.5
1696.0
1696.5
m/z
27
1697.0
C 769 H 1212 N 210 O 218 S 2 +H:
C 769 H 1222 N 210 O 218 S 2
p (gss, s /p:8) Chrg 10
R: 60000 Res .Pwr . @FWHM
High Masses and Mass Accuracy:
Carbonic Anhydrase, charge state 21+
1383.08684
R=0
100
1382.94236
R=0
90
measured
1383.23011
R=0
80
NL:
5.01E3
CARB_ANH_4#18-38 RT:
0.78-1.72 AV: 21 T: FTMS +
p ESI Full ms2 [email protected]
[ 380.00-2000.00]
70
60
50
40
1383.51462
R=0
30
20
10
NL:
2.14E3
1383.08962
R=59809
100
1382.94634
R=59798
90
1383.23292
R=59776
80
60
1383.42391
R=59780
50
1382.75534
R=59820
40
theoretical
1383.32842
R=59787
1382.85086
R=59809
70
30
10
1383.56712
R=59762
1383.75806
R=59731
1382.61205
R=59798
0
1382.5
1383.0
1383.5
m/z
28
1383.94076
R=0
1382.62581
R=0
0
20
All mass accuracies < 3 ppm
1383.42033
R=0
1382.79931
R=0
C 1312 H 2017 N 358 O 384 S 3:
C 1312 H 2017 N 358 O 384 S 3
p (gss, s /p:40) Chrg 21
R: 60000 Res .Pwr . @FWHM
External Mass Accuracy Check
RMS of 2
m/z 524.264964
m/z 1421.977862
Long-term stability of external calibration
8.5
8.0
7.5
7.0
6.5
6.0
5.5
4.5
4.0
3.5
Deviation [ppm]
Deviation, ppm
5.0
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
3 ppm
-1.5
-2.0
4 hours
-2.5
-3.0
-3.5
1
2
3
4
5
6
7
8
9
10
11
Time [h]
12
13
14
15
16
17
18
19
Time, hours
(m/z 1422 at 100%; m/z 524 at <0.02%).
29
20
21
Internal Calibration in LTQ Orbitrap
Mixing
populations
and ejection
Injectionofof
ofion
analyte
Injection
the
calibrant
Detection
Olsen, J.V.; de Godoy, L.M.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.A.; Lange, O.;
Horning, S.; Mann, M.
“Parts per million mass accuracy on an orbitrap mass spectrometer via lock-mass injection into a Ctrap.”
Mol. Cell. Proteomics 2005, 4: 2010-2021.
30
Speed
..while delivering accurate mass
in MS, MS/MS and MSn
31
Complex Protein Digests: ‘Big 5’ Experiment
Digging deep into the baseline for low
abundant co-eluting peptides
Total time 2.4 seconds
SE1
Full Scan
MS
SE2
MS/MS
SE3
MS/MS
SE4
MS/MS
SE5
MS/MS
SE6
MS/MS
1 LTQ Orbitrap high resolution full scan
and
5 fast ion trap MS/MS scans
32
SE denotes a ‘scan event’
Complex Mixture - Selecting Ions for
Fragmentation
ControlB3a #4869 RT: 41.56 AV: 1 NL: 7.39E6
T: FTMS + p NSI Full ms [465.00-1600.00]
600.9776
100
804.3450
95
600.9776
100
Relative Abundance
Relative Abundance
85
80
558.7548
75
804.3450
100
50
532.2505
65
60
55
50
0
45
40
Relative Abundance
70
558.7548
100
90
50
598.6563
50
599.0
547.6516
0
548
35
600.0
550
601.0
m/z
552
699.3472
897.9816
716.0311
956.8159
974.9185
849.8573
5
775
780
MS/MS
10
649.9460
MS/MS
15
0
MS/MS
20
MS/MS
MS/MS
25
554
556
603.0
558
560
562
m/z
777.3942
30
602.0
785
790
m/z
795
800
805
810
1116.5020
0
500
600
700
800
900
1000
1100
m/z
33
1200
1300
1400
1500
1600
Parallel Detection in Orbitrap and Linear Ion Trap
ControlB3a #4870 RT: 41.57 AV: 1 NL: 7.16E3
T: ITMS + c NSI d Full ms2 [email protected] [150.00-1810.00]
437.9462
100
95
RT: 41.57
MS/MS of m/z 598.6
Scan # 4870
90
85
80
75
542.7487
70
ControlB3a #4869 RT: 41.56 AV: 1 NL: 7.39E6
T: FTMS + p NSI Full ms [465.00-1600.00]
600.9776
100
804.3450
95
90
RT: 41.56
High resolution
Full scan # 4869
85
80
558.7548
75
65
70
60
532.2505
65
Relative Abundance
55
50
45
40
590.2733
35
983.4816
30
60
55
50
45
40
776.4982
25
35
20
30
15
623.5060
10
25
301.2447
1171.8290
400
600
800
1000
m/z
699.3472
15
0
200
649.9460
20
1084.6279
5
1200
1400
1600
1800
10
956.8159
974.9185
849.8573
5
ControlB3a #4871 RT: 41.58 AV: 1 NL: 4.17E3
T: ITMS + c NSI d Full ms2 [email protected] [140.00-1655.00]
535.5252
100
897.9816
716.0311
1116.5020
0
500
600
700
800
900
1000
1100
1200
1300
1400
1500
m/z
95
90
85
RT: 41.58
MS/MS of m/z 547.3
Scan # 4871
80
75
70
Relative Abundance
65
60
690.1100
55
ControlB3a #4873 RT: 41.59 AV: 1 NL: 1.54E3
T: ITMS + c NSI d Full ms2 [email protected] [255.00-1960.00]
95
45
85
RT: 41.59
MS/MS of m/z 974.9
Scan # 4873
75
70
575.8568
65
Relative Abundance
35
450.8616
361.2963
30
25
747.4839
20
10
856.3868
80
40
15
1409.7291
90
490.3550
50
1092.6033
100
330.2767
262.1056
55
50
45
40
35
900.6165 1022.6853
234.2242
5
30
1088.7388
400
600
800
1000
1200
1400
1294.7877
965.7724
25
0
200
539.2245
60
1223.7373
20
1600
m/z
15
ControlB3a #4872 RT: 41.58 AV: 1 NL: 3.27E3
T: ITMS + c NSI d Full ms2 [email protected] [200.00-790.00]
654.2495 757.5266
1801.9797
10
701.4880
100
5
1513.5245
436.2499
393.1896
1674.7556
0
95
400
90
600
800
1000
1200
1400
1600
1800
m/z
592.5975
85
80
75
70
60
55
RT: 41.60
MS/MS of m/z 1116.5
Scan # 4874
ControlB3a #4874 RT: 41.60 AV: 1 NL: 3.86E2
T: ITMS + c NSI d Full ms2 [email protected] [295.00-1130.00]
100
95
90
85
80
1098.4486
921.5529
• Total cycle is 2.4 seconds
• 1 High resolution scan with
accuracies < 5 ppm
• External calibration
• 5 ion trap MS/MS in parallel
1018.6340
75
50
70
45
480.2985
65
40
35
400.3238
30
729.5197
25
767.4117
20
15
5
0
200
309.1429
354.2529
371.1810
250
300
350
400
450
500
m/z
550
55
50
680.4445
45
805.3505
40
637.2200
361.1457
30
683.1174
952.3358
25
547.4052
469.5364 512.5754
252.0748
60
35
654.3235
10
Relative Abundance
Relative Abundance
65
RT: 41.58
MS/MS of m/z 777.4
Scan # 4872
784.3491
514.2266
20
600
650
700
750
459.1983
15
10
333.3748
588.2148
853.4705
871.4709
706.2417
445.2212
5
0
300
34
400
500
600
700
m/z
800
900
1000
1100
1600
Resolving Power vs Cycle Time
785.8419
R=5901
100
786.3435
R=5900
RP 7500
0.2 s
80
786.8447
R=5900
60
40
785.5934
R=6200
20
0
785.8421
R=23801
Relative Abundance
100
787.3463
R=6000
787.8453
R=5800
786.3434
R=23900
RP 30000
0.5 s
80
786.8446
R=24000
60
40
785.5992
R=24300
20
787.3457
R=24100
787.8471
R=15600
0
785.8419
R=48101
100
80
786.3435
R=47700
786.8446
R=48200
60
40
785.5994
R=47100
20
787.3458
R=47500
RP 60000
0.9 s
787.8477
R=42000
0
785.8413
R=94801
100
80
786.3428
R=95200
786.8442
R=93600
60
40
785.5989
R=95800
20
787.3458
R=98000
RP 100000
1.6 s
787.8477
R=89200
0
785.0
35
785.2
785.4
785.6
785.8
786.0
786.2
786.4
786.6
786.8
m/z
787.0
787.2
787.4
787.6
787.8
788.0
788.2
Sensitivity
36
Horse Cytochrome C, Horse Myoglobin
Bovine Serum Albumin, 1 fmol on column
RT: 19.01 - 42.26
100
95
90
85
80
BSA_CC_MYO_3fmol_each_total_01 #3588 RT: 24.90 AV: 1 NL: 7.14E3
NL:ITMS
4.29E6
T:
+ c NSI d Full ms2 [email protected] [ 165.00-1320.00]
Base Peak m/z=
470.00-2000.00 F: FTMS +
100Full ms [
p NSI
300.00-2000.00] MS
95
BSA_CC_MYO_3fmol_each
_total_01
90
m/z 653 (2+)
theory: 653.361701
measured: 653.36127 (+0.7 ppm)
80
478.25
70
75
70
65
10
60
791.42
55
45
956.52
494.15
620.36
40
749.41
536.16
536.16
477.37
536.16
536.16
536.16
251.21
50
607.26
784.37
863.41
536.16
536.16
536.16
536.16
536.16
536.16
861.14
710.84
547.32
480.61
584.81
582.32
485.01
564.36
653.36
536.16
15
536.16
496.52
536.16
25
536.16
536.16
634.39
30
533.60
35
536.16
40
735.85
45
740.40
471.24
50
Relative Abundance
637.31
55
65
879.42
746.38
643.13
60
20
dd IT MSMS on this scan (scan 3588)
m/z 653
85
75
1055.55
1056.61
644.61
35
712.49
30
332.31
20
957.46
465.24
713.59
15
10
841.44
594.25
25
223.23
5
523.78
350.23
252.19
314.32
458.63
842.56
819.29
695.39
1168.61
1046.51
823.48
524.44
933.46
958.57
843.59
1057.53
1141.69
1169.71
1170.61
0
20
22
24
26
28
30
32
Time (min)
34
36
38
37
42
200
300
400
500
600
700
800
m/z
nanoLC
NewObjective 75 um PicoFrit column
Flow rate: 200 nl / min
From 98 % A (water, 0.1 % FA) to 60% B
(Acetonitrile, 0.1 % FA) in 20 min
Coverage
Cytochrome C
Myoglobin
BSA
40
67%
71%
45%
900
1000
1100
1200
1300
Protein digest mix: 1 fmol each on column
Peptide m/z 653 (2+) at RT: 24.93 min
RT: 19.01 - 42.26
100
NL: 4.29E6
Base Peak m/z=
470.00-2000.00 F: FTMS +
p NSI Full ms [
300.00-2000.00] MS
BSA_CC_MYO_3fmol_each
_total_01
95
90
85
80
478.25
75
70
Base Peak Chromatogram
637.31
65
10
20
38
22
26
28
30
32
Time (min)
34
36
494.15
620.36
38
749.41
536.16
536.16
536.16
477.37
536.16
536.16
536.16
536.16
607.26
784.37
863.41
536.16
536.16
536.16
536.16
861.14
710.84
480.61
584.81
582.32
547.32
24
485.01
15
564.36
653.36
536.16
20
536.16
496.52
536.16
25
536.16
536.16
634.39
30
533.60
35
536.16
40
735.85
45
740.40
471.24
50
879.42
746.38
55
791.42
643.13
60
40
42
Data Dependent MS/MS of Peptide m/z 653 (2+)
BSA_CC_MYO_3fmol_each_total_01 #3588 RT: 24.90 AV: 1 NL: 7.14E3
T: ITMS + c NSI d Full ms2 [email protected] [ 165.00-1320.00]
1055.55
100
95
90
85
80
75
70
65
60
55
251.21
50
45
956.52
40
1056.61
644.61
35
712.49
30
332.31
20
957.46
465.24
713.59
15
10
841.44
594.25
25
523.78
223.23
252.19
314.32
5
350.23
842.56
524.44
819.29
695.39
458.63
1168.61
1046.51
823.48
933.46
958.57
843.59
1057.53
1141.69
1169.71
1170.61
0
200
300
400
500
600
700
800
m/z
39
900
1000
1100
1200
1300
Assigned Fragment Ions by SEQUEST
40
Dynamic Range
..detecting minor components in
complex mixtures
41
Angiotensin 10 pmol/ul + Glu-fibrinogen 10 fmol/ul
Concentration Difference 1000x
Angio10pmol_Glufib10fmol_Res30000
#6 RT: 0.09 AV: 1
T: FTMS + p ESI Full ms [ 215.00-2000.00]
428.2281
100
NL: 1.18E8
95
90
85
80
75
785.5992
100
NL: 9.35E4
785.8419
70
786.3431
90
65
80
Measured 785.8419
Calculated 785.8421
Dm = -0.2 ppm
60
Relative Abundance
70
786.6021
Relative Abundance
55
60
50
50
45
40
40
641.8381
35
786.8450
30
787.3463
20
787.6064
30
10
25
0
784.5
20
15
10
385.7010
5
785.0
633.3358
513.2818
269.1610
652.8230
770.3946
786.0
400
600
800
786.5
m/z
787.0
787.5
1282.6699
915.6690 1014.5159
0
1000
1221.9934 1305.6428
1200
m/z
42
785.5
785
?
1400
1552.9739
1600
1711.2153 1804.3352
1800
2000
788.0
MS/MS of Glu-Fibrinogen @10 fmol/ul
y4
480.2558
#199-199 RT:5.30-5.30 NL: 6.64E3
100
95
Measured 246.1558
Calculated 246.1561
Dm = -1.2 ppm
90
y5
684.3457
85
80
75
y6
813.3882
70
65
Relative Abundance
60
55
y3
333.1879
50
45
40
y+2
12
692.8
35
y7
942.4313
30
25
20
627.3
15
10
5
y2
246.1558
+1
b8
887.3
+1
b5
515.2
0
200
300
400
500
600
700
800
m/z
43
900
1000
1100
1200
Dynamic Range in a Single Spectrum
(0.75 sec Acquisition)
100000
10000
1000
S/B
m/z 1522
m/z 524
m/z 195
100
10
1
100
1000
10000
100000
Target value, ions
44
1000000 10000000
Conclusion
• The orbitrap mass analyzer is first fundamentally new
mass analyzer introduced commercially in over 20 years
– The last novel mass spectrometer introduction was the RF Ion Trap
(Finnigan MAT) in the early1980’s
• The main advantages of the orbitrap mass analyzer are:
– Unsurpassed dynamic range of mass accuracy
– High resolution
– High sensitivity
– High stability
– Compact package
– Maintenance-free
• The LTQ Orbitrap is the first implementation of the
orbitrap analyzer in a hybrid instrument
– Isolation, fragmentation and MSn is provided mainly by the linear trap
– The C-trap supports multiple ion fills, CID and future expansion
– The orbitrap is and will be used as a detector
45
About the Authors
Dr. Alexander Makarov
The inventor of orbitrap mass analyser
Research Manager at Thermo Electron in
Bremen
Dr. Michaela Scigelova
LC/MS application expert
at Thermo Electron in UK
46