DECONFINED PHASE VIA MULTIPARTCLE CORRELATIONS

Download Report

Transcript DECONFINED PHASE VIA MULTIPARTCLE CORRELATIONS

HEAVY QUARKONIA PHYSICS
ASSOCIATED WITH NEW HIGGS
EFFECTS AND TRANSITIONS
Gennady Kozlov
JOINT INSTITUTE FOR NUCLEAR RESEARCH
Dubna
30.06.2006
G.Kozlov (JINR)
1
MAIN GOAL: NP at TeV

New Family Generations
Intriguing and not solved yet in Modern Physics
- Heavy quarks 4th generation
-
U4 ,
D4 ,
(+2/3)
(-1/3)
l4 , ...
Heavy quarkonia (U 4 U 4 ), ( D4 D4 ), ...
WHERE IS TOPONIUM IN PARTICLE PHYSICS AGENDA?
In SM no explanation of why there should be just 3 generations of
quarks and leptons or their hierarchy of masses?
Fundamental mass, Mixing, N f } NOT fixed by SM
! TH motivations:
- E6 models
- heterotic string  Q4 , l4 ,  4
- Little Higgs-like models
Q  (q, q~ ), mq~ ~ O(1 GeV )
30.06.2006
G.Kozlov (JINR)
2
EXPERIMENTAL EVIDENCE (?)
Lower limits on 4th family masses
m 4  45 GeV
( LEP1)
m l4  100 GeV
( LEP 2)
m D4  199 GeV , D4  qZ
( FNAL)
m D4  128 GeV , D4  qW
( FNAL)
mU 4  220 GeV
( FNAL)
Excess of events in W + 2, 3 topologies

Superjet events
Anomalous interactions (?)
U4  t   W b   -
single jet
soft lepton secondary vertex
pp  V   U4 t
leptonically  
hadronically
30.06.2006
(CDF, 2002)
Identification of  (light Higgs?)
G.Kozlov (JINR)
3
 Vt b : Wider window
0,9990  Vt b  0,9993
3 SM generations
0.08  Vt b  0,9993
 3 generations
HEAVY QUARKONIA PRODUCTION
J PC  0  
gg  Ps (U4 ,D4 )
J PC  1 
e  e   g V (U 4 , D4 ) ILC ,
pp, pp
s  0,5  1,0 (TeV )
IF LOW Vt b ~ 0,1  Ps(U 4 , D4 ) COULD MANIFEST ITSELF AT LHC
 MEASUREMENT OF Vt b VIA s – CHANNEL SINGLE top AT THE
LHC  INDIRECT INFORMATION ON THE EXISTENCE OF
Ps(U 4U 4 ) (toponium)
30.06.2006
G.Kozlov (JINR)
4
LIGHT HIGGS & 4th GENERATION QUARKS
SM (MSSM):
m 0  m cos 2  M
h
Z0
m  min( M 0 , M 0 )
Z
VITAL IMPORTANCE:
Ruled out by LEP2
A
RADIATIVE CORRECTIONS
EVEN WITH 4th GENERATION QUARKS
Veff  V0  V1  V2  ...
 m 2j 3 
1
2J j
4
 1 2J j  1 C j m j  ln 2  
V1  
2
j 64
2
 Q
m j  m j ( j )
m 0  lower bound m LEP as extra generation fermions are included
h
30.06.2006
G.Kozlov (JINR)
5
IF NO DIRECT INDICATION OF STABLE
f 4 (Q4 , l 4 , ...), i .e .  4   universe

SEARCH FOR
f4 :
PRODUCTION (FORMATION) AND THEIR IDENTIFICATION

DECAYS
E.g., UNSTABLE
(Q4 Q4 )  (decays)
Higgs + something ( Z , Z , ... )
Why: LARGE YUKAWA COUPLINGS
Golden triangle
Higgs
Q
30.06.2006
Gauge ( Z , Z , ...)
G.Kozlov (JINR)
6
MAIN STRATEGY (for heavy quarks/quarkonia search):
 PRODUCTION
 IDENTIFICATION
DECAYS
NEW COUPLING CONSTANTS
(HIGGS, SM QUARKS, GAUGE BOSONS, …)
30.06.2006
G.Kozlov (JINR)
7
ARGUMENTS
 NO THEOR. ARGUMENTS TO RULE OUT Q4 at (1 TeV) Barger et al
1984
Fra mpton et al 2000
He H -J et al
2001
Nov ikov et al 2002
GAK 1999, 2000, 2004
TH MOTIVATION:
- GUT EXTENDED MODELS
- CP VIOLATION
- GAUGE-MEDIATED SUSY BREAKING
- HIGHER-DIMENSION REASON AT TeV SCALE
VECTOR-LIKE HEAVY FERMIONS OCCUR
- LATEST DATA

 3d & 4th SM FAMILY SIMILAR STATUS
- VACUUM STABILITY REASON  UPPER BOUND OF HEAVY QUARK MASSES
30.06.2006
G.Kozlov (JINR)
8
HISTORICALLY
FIRST SIGNALS OF c- and b-quarks:
J / (c c)  leptons,
CAN
(b b)  leptons
Q4 ALSO BE DISCOVERED THROUGH DECAY OF (bound state)4 ?
T (Q Q )  Z Higgs, T (Q1Q1 )  T (Q2Q 2 ) Higgs, T (Q Q )   Higgs
T (Q Q )  gg Higgs, T (Q Q )   Higgs
T (Q Q ) : J PC  1  , 0 -
KNOWN:
t  Wb t  c (cg, cZ ) t  cHiggs : BR ~ 1013  1011
SHOULD BE SEARCHED FOR
Q4  Wq Q4  q ( gq, Zq) Q4  q Higgs ?
30.06.2006
G.Kozlov (JINR)
9
CREATION OF
Q Q OUT OF VACUUM

SCREENING OF
Q COLOR CHARGE AT x  
 BREAKING OF COLOR FLUX TUBES
 SPLITTING OF QUARKS
BEYOND E SPLIT  HADRONIZATION OCCURS
INTERACTION BY:
- ONE-GLUON
- SCALAR BOSON EXCHANGE (HIGGS-LIKE)
- …….
30.06.2006
G.Kozlov (JINR)
10
EFFECTIVE HIGGS-BOSON-LIKE INTERPLAY

Q Q LOCATED AT r ~ [mQ   ( mQ )]1 ,
 BOUND STATE WAVE FUNCTION
r  rstrong
~ exp(   r ),   mQ  ( mQ )
 HEAVY QUARKONIUM SYSTEM : POTENTIAL APPROACH
sin( qr ) 2
V ( r ) ~  dq  S (q )
, q  (k  k )2
0
qr
TO AVOID ln ln q DIVERGENCES AT LARGE q

1
2
2
SCREENING FUNCTION Y (q , m ) 
1  q2 / m2

2
ASYMPTOTIC CONDITION:
30.06.2006
Y  1 as screeningmass m 2  
G.Kozlov (JINR)
11
SCREEN-MODIFIED POTENTIAL
sin( qr )
V ( r ) ~  dq  S (q ) Y (q , m )

qr

2
2
2

WELL-DEFINED FUNCTION
 (q )   (q )
2
S
2
S
0
AS
q 2 LARGE. WEAK q -DEPENDENCE
2
 1 exp(  mr ) 
V ( r ,  )   S ( q0 )   
as 2  0

r
Q
 r

2

ADDITIONAL CONTRIBUTION DUE TO
SCALAR (Higgs) BOSON WITH SCREENING MASS
30.06.2006
G.Kozlov (JINR)
m
12
EFFECTIVE POTENTIAL
 ( mQ ,  Q )
CF
Veff ( r ) ~   S ( mQ ) 
exp(  m  r )
r
r
mQ2 2
 ( mQ ,  Q ) 
 Q
2
4 v
as stronger as mQ heavier
  1
SM
  1
Beyond the SM
Q
Q


,

comb
S
30.06.2006

comb
4
  S ( mQ )   ( mQ ,  Q ) exp(  m  r ),
3
G.Kozlov (JINR)
4
3
  
S
S
13
30.06.2006
G.Kozlov (JINR)
14
30.06.2006
G.Kozlov (JINR)
15
30.06.2006
G.Kozlov (JINR)
16
GUARANTEE CRITERION FOR HEAVY BOUND STATE T (Q Q)
c
tot

 1 (! )
B
USE:
 STRONG ATTRACTIVE FORCES VIA HIGGS-LIKE EXCHANGE
 STRONG YUKAWA COUPLING  ( mQ ,  Q )
tot  T  U
T (U U )  hZ ,  Z,  H , W W  , b b, t t ,    , ggg, ...
  Z,  h - suppresed by 
 b b, t t  large QCD bgrd .
     suppressed due to two  loop couplings
 ggg  small contribution due to  S3
30.06.2006
G.Kozlov (JINR)
17
SINGLE HEAVY QUARK DECAYS
U  DW  , bW  , bH 
U  bH 
neglected
m 2   ( m A2  mW2 )(1   ),   0.1
H
OR EVEN NOT ALLOWED BY KINEMATICAL REASON
IN THE DECOUPLING LIMIT:
( m W / m A ) 2  1.
30.06.2006
G.Kozlov (JINR)
18
TEVATRON DATA RESTRICTIONS
BR( t  H  b )  (0.5  0.6) at 95% CL
CDF ( 2000)
if 60 GeV  m
H
 160 GeV
and if BR( H     )  1
D0 ( 2002)
BR( t  H  b )  0.36 at 95% CL
0.3  tan   150
m
H
30.06.2006
 160 GeV
G.Kozlov (JINR)
19
THE CASE OF U 4 QUARKS
tot  T (T (U U )  hZ , W W  )  U (U  DW  , bW  )
SPIN-1
(UU ) BOUND STATE
 mU 2 
1 2  mU   3
2
  f 
   (T (U U )  hZ ) 
 hU  Z vU   W 
1
16
2  mW  

m Z2
 hU  1  2 sin 2 cos 2 tan 1  ,  W   / sW2 ,  Z   W / cW2
mA
4
3
(mU ) 2  m 2
f  f  , mU , m   
, M T  2 mU
2
2
(  mU )  2 m 
vU  1  8 s W / 3 ,   1 - 4m h / M T 
2
30.06.2006
2
2
G.Kozlov (JINR)
1
2
20
30.06.2006
G.Kozlov (JINR)
21
PSEUDOSCALAR 4-QUARKONIUM CASE
3 mU 2 2  mU  3
   (T (U U )  h Z ) 
 hU Z   f 
0
32
 mZ 
4
3
   (T (UU  h Z )  6.80  hU2 GeV
0
RESULT: 3 TIMES MORE THAN THAT OF 1

CASE
PSEUDOSCALAR 4-“TOPONIUM” IS THE BEST CANDIDATE
30.06.2006
G.Kozlov (JINR)
22
(Q4Q4 ) - PRODUCTION. CROSS-SECTION
 mQ  1

QCD:  c ~  S 
  s
 Q
3
FALLS DOWN AS mQ INCREASES
 (Higgs) - boson effect:
    ~ ( m , m  ,   )
S
S
Q
Q
2
3
m
m
Q
2
~
 ( mQ ,  Q ) 
 Q exp(  ),  
1
2
16 v
 mQ
   (1  3~  3~   ~  )
1
eff
30.06.2006
c
S
2
2
S
3
3
S
G.Kozlov (JINR)
23
30.06.2006
G.Kozlov (JINR)
24
30.06.2006
G.Kozlov (JINR)
25
T (Q4Q4 ) PRODUCTION IN DARIATIVE DECAYS OF HIGGS – BOSONS
  T (Q Q )  
  h, H 2 HDM
Q  b, t ,...
1
1


P   P   
A(  T ) ~ 2 4 gV eQ Q

k
2
v 1  ( m / m Q )
gV :
T (Q Q ) Q   Q 0  mT2 gV  
4
g V estimation : (T (Q Q )  l l )   (eQ gV ) 2 mT
3
30.06.2006
G.Kozlov (JINR)
26
BR(  T (Q Q ) ) (  T (Q Q ) )
f 


BR(  Q Q )
(  Q Q )
 m 
64eQ 2  mQ  2
 K ( y ,  S )1   T 

gV 

m 
3
m
   
 
2
2

K ( y ,  )  1  C ln 2 ln 4 y ,

S
S
F

important for decays
30.06.2006
2



1 / 2
 m 

y  

2
m
Q 

2
h   (b b )
H   (b b )
G.Kozlov (JINR)
27
30.06.2006
G.Kozlov (JINR)
28
30.06.2006
G.Kozlov (JINR)
29
30.06.2006
G.Kozlov (JINR)
30
ON LEPTONIC DECAY OF T (Q Q) WITH A HIGGS-BOSON EMISSION
T (Q Q )  V  H  l l H ,
V  : Z , Z ,...( E 6 , Little Higgs,...)
 Low-Energy Theorem Small momentum of Higgs-boson External Higgs Field
1 / 2 ( mT , m H , sl ) 2
(T (Q Q )  l lH ) sl
R
  dsl
 HQ 
2 2
0
(T (Q Q )  l l )
24 v sl
m ax
 4m l  
2m l2   ( mT2 , m H2 , sl )  6mT2 sl
 1 
  1 

2
2
2
2


s
s
m

s


m

 

l
l
T
l
T
T
2
sl   pl  pl   2m l2  pl  pl 
2
1/ 2
HU
z  m Z / m A   1
HD
tan   vU / v D
  1  z sin( 2 ) cos(2 ) tan  ,
  1  z sin( 2 ) cos(2 ) tan  ,
1
2
F   1 (T (Q Q )  l l ) d(T (Q Q )  l lh) / dsl
30.06.2006
G.Kozlov (JINR)
31
30.06.2006
G.Kozlov (JINR)
32
30.06.2006
G.Kozlov (JINR)
33
INSTEAD OF CONCLUSIONS …




Higgs-boson potential model
Phenomenological “hard” Yukawa couplings 
Non-perturbative fluctuations of gluon field rather small GAK (2004)
Conformal properties of QCD are essential for lighter
hadrons (c c ), (b b)
 Binding critical ratio c is strongly sensitive to  Q (beyond the SM)
 Crucial role of Q4 :
- Enhancement factor

  8.9
h  gg
  (4.5  5.5)
  8.5
h  
h  gg
  (4.0  5.0)
h  
Higgs  gg, Higgs  
114 GeV  m h  180 GeV ( light CP  even Higgs  boson )
30.06.2006
for decays
mQ4  200 GeV
mQ4  600 GeV
G.Kozlov (JINR)
34
for 180 GeV  m H  800 GeV
( heavy CP  even Higgs  boson)
9    13
H  gg
mQ4  200 GeV
15    25
9    27
H  
H  gg
mQ4  600 GeV
15    57 H  
 If m  ~ (100 GeV )

  Q ~ O(1) appropriate for mQ  2m t
 For ( t t ) bound state with   t ~ O(1) SM

m   m LEP  unsafely below the LEP lower bound
 t  1 beyond the SM !
 MINOR DEPENDENCE ON
30.06.2006
tan 
G.Kozlov (JINR)
35