Extruder Status

Download Report

Transcript Extruder Status

APD, Introduction
Victor Rykalin
Content
•
•
•
•
•
•
APD
Electronics
Power supply
Box
Final table
Recommendations
7/16/2015
Victor Rykalin
2
APD and PMT
advantages
disadvantages
• Compact
• Insensitive to
magnetic field
• Higher QE over wider
spectral range
• faster, shorter transit
time
• cheaper
• simpler gain
calibration
7/16/2015
• Smaller sensitive area
• still noisier than PMT
• need smart
preamplifier
• larger temperature
dependence
• optical coupling
nontrivial !!!
Victor Rykalin
3
APD (Classics)
100
um
.5
MRS,
Si PM
7/16/2015
Victor Rykalin
4
Vendors
APD
Hamamatsu
7/16/2015
RMD
Victor Rykalin
MRS, Si PM
5
General
• Gain
1.1
• QE
12% -
•
•
•
•
85 % (500 nm)
Gain Temperature Coefficient (-15°to +40°)
Bulk current TC
( ------------ )
Noise SQRT(I bulk)
•
•
•
- 10E(6)
-1.5%/°C
9.6 %/C
Signal/Noise
S/N= {(N2sig * G2 )/(Noise)2}
(Noise=Noise(T,C,G,time,F)
Noise2=Noise2(electronics)+Noise(bulk)2
MIP, QE=80%, Nsig= 40 PE, G=150, =100 ns, T=25
C Ib = 1nA
Noise(electronics)=2000e rms,
S/N(150) ~ 2.7 est.
S/N(150) ~ 1.5 real
•
7/16/2015
Victor Rykalin
6
HAMAMATSU
• Gain
7/16/2015
Victor Rykalin
7
Hamamatsu
~500
80 %
500 nm
7/16/2015
Victor Rykalin
8
RMD
o
Parameter Typical Value at 22 C
gain (at optimal signal-to-noise ratio) 300 to 2000
2
capacitance 0.7 pf/mm
bias voltage (device is typically operated at optimal signal to noise ratio) 1650 to 1750 volts
QE at 400 nm 50 %
QE at 532 nm 65 %
QE at 830 to 905 nm 75 %
QE at 1064 nm 20 %
Type No.
S0223
S0814
nominal Active Area (if array, of pixel)
2
mm
Rise Time for a charged particle, ns
Rise Time at 532 nm, ns
Rise Time at 1064 nm. ns
Noise Equivalent Power, rms
4
<1
5
<2
19
200
64
<1
8
<2
42
450
1/2
fW/(Hz)
S131 A160 A6403
5
4
1
169
<1
10
<2
85
900
4
<1
5
<2
19
200
<1
5
<2
10
100
Noise, FWHM eV
7/16/2015
Victor Rykalin
9
RMD
7/16/2015
Victor Rykalin
10
MRS or Si PM (there is no
commercial information)
Photodetectors
---Si-PM’s:
Studies at MEPHI (Moscow),
6 B. Dolgoshein,
See talk at International Conference on
“Advanced Technology and Particle Physics”, Como, Italy, Oct. 2001
100-4000 pixels/mm 2 with common output,
pixel size is 15-50 m, Cpixel ~100 fmF
each pixel consists of:
--drift region in inner electrical field (10-500 V/cm)
--Geiger region, ~0.7 m, electrical field of 500.000 V/cm
gain 0.2..20*10 5 >>
--output signal is proportional to number of pixels fired:
S ~N pixel fired = m*(1-e-Nph*/m ) with:
•M - total number of pixels,
•Nph - number of photons,
•  - photon detection efficiency.
--sensitive to single photons,
--problem is dark carrier rate (-40°C, ~200 kHz) >>
--first selected samples available Nov. 2002,
• Gain 10
---photomultipliers,
properties known, have to be small, compact and cheap!
13.4.02, V.Korbel, DESY
7/16/2015
II. ECFA-DESY LC workshop, St.Malo
Victor Rykalin
14
11
MRS or Si PMT and VLPC
7/16/2015
Victor Rykalin
12
Electronics
• CMS(HCAL) = 0.4mV/fq
• 60 channels, 150 ns (base), ENC(20pF)~1000e rms
7/16/2015
Victor Rykalin
13
Electronics
• QP02 k = 7mV/fq
• 32 channels, 40 ns (base), ENC(20 pF)=2000 rms
7/16/2015
Victor Rykalin
14
Circuit suggestions for APD
1
Preamp.
- HV
Ground
2
+HV
Preamp.
7/16/2015
Victor Rykalin
15
Power supplies
• Ripple (5 mV and less)
• dIk=dU/R
dIk=5 mV/5 k dIk=1uA
dIb(signal)=50*0.8*500*q/10ns=>dIk(signal)=
=320nA*B=32uA, 1/32*100 = 3%
• J4-2p, J4-2n ------ HV, S7001 low
voltage seems to be an appropriate
approach.
7/16/2015
Victor Rykalin
16
HV power supply
J4-2P and
J4-2N
from Matsusada
Precision Inc.
2P –
positive 2000V,
2N – negative 2kV.
Ripple of 2mV. 2mA
output current.
Voltage
regulated by
multi-turn built-in
potentiometer or
remotely.
Recommended
APD.
Non-standard
for
size.
Current
price as of
3/26/2003 is $252.00
(on picture it’s the left
unit)
7/16/2015
Victor Rykalin
17
Low voltage power supply
S7-001
Herbach&Rademan
power supply
(www.herbach.com)
0
- ±30V (positive
and negative
simultaneously,
0.5mV ripple RMS.
Current limit 5A.
Regulated. Dual
Panel meters.
Current price
is
$238.95
7/16/2015
Victor Rykalin
18
Box
Low-cost –
about $35 per each
element or less
Allows
good temperature control,
as precise as 0.1 degree at around
20oC,
Performance
and precision
somewhat degrade at negative
temperatures because the element
will require a large current ( 5A)
in that range, which is not easy to
control.
#13
This is an
“artistic” representation of the box that will
have APD inside and the box with pre-amplifier (which
is not being cooled as of current scheme but the ability
to do this has been integrated into this particular
design).
7/16/2015
Victor Rykalin
19
Final table
APD type
Input
signal
from MIP
(photons)
Primary
photoel.
(PE)
Gain
HAMAMATSU
RMD
MRS or
Si PM
VLPC
PMT
60
60
60
60
60
48
36
7.2
48
7.2
2000
10E(6)
10E(5)
10E(6)
11.5
1152
768
1152
400 ?
APD output
charge
(fQ)
S/N(room T)
3
~ 5.5 Est.
20 Est.
~ 3 real
~10 Real
~ 8.1 (10oC) ~27(10C)
~8
meas.*
> 10
>10 (9K)
meas.***
meas.**
Output
1.28
4.6
460.8
307
21.3
80.5
saturation
saturation
460.8
CMS(mV)
Output
saturation
QP02(mV)
* B. Dolgoshein An Advanced Study of Silicon PM ICFA IB
2002
**A. Bross et all. Fermilab FN 0733 2003
*** Rykalin V. NICADD presentation http://nicadd.niu.edu 2002
7/16/2015
Victor Rykalin
20
Recommendations
•
•
•
•
•
•
HAMAMATSU
QP02
S/N ~ 3
RMD
QP02
S/N ~ 10
MRS or Si PM CMS(HCAL)S/N ~ 6
J4-2P,2N High voltage,S7-001 low voltage
Box with Peltier pads cooling
Circuit 2
is our choice
7/16/2015
Victor Rykalin
21