Transcript Document

Simulation of High Speed Photonic
Networks
Professor Z. Ghassemlooy
Optical Communications Research Group
http://soe.unn.ac.uk/ocr/
School of Computing, Engineering and Information
Sciences
University of Northumbria at Newcastle,
UK
1
Presentation Outline
1.
Photonic Networks
2.
Photonic Packet Switching
3.
Photonic Router Modelling
4.
OFDM
5.
Results
3.
Conclusions
Eng. of S/W Pro., India 2009
2
Optical Communications
 1st generation optical networks: packet routing and switching
are mainly carried out using high-speed electronic devices.
 However, as the transmission rate continues to increase,
electronically processing data potentially becomes a
bottleneck at an intermediate node along the network.
[bit/s]
1P
100T
Traffic demand forecast (NEC–2001)
10T
Total
1T
Capacity increase : 2~4 times a year
Data
100G
10G
Bit cost decrease : 1/2 time a year
Voice
1G
100M
1995
2000
2005
2010
 Solution: All-optical processing & switching
3
Network Topology – An Overview
Ref: Prof. Leonid G. Kazovsky, et al. “Broadband Fiber Access”, available online from http://www.comsoc.org/freetutorials/
Eng. of S/W Pro., India 2009
All-Optical Packet Switching
Client
Network
0111
Objectives
• High Bit Rate
• High Throughput
Low-speed packet
High-speed
packet
Low-speed
packet
1011
Core Network
Client
Network
1001
1010
Header
Processing!
0110
Edge Router (Ingress/Egress)
with 4-bit address XXXX
Core Router
XXXX
Eng. of S/W Pro., India 2009
5
Photonic Network - Packet Routing
Optical vs. Electrical in High-speed Routing
PL
H
O/E
Client
Network
0111
Ck
Low-speed packet
E/O
Processing
High-speed
packet
H
0100
Matching!
Routing table
Patterns
Outputs
0000B (0D)
OP1
0001B (1D)
OP2
0010B (2D)
OP1
0011B (3D)
OP1
0100B (4D)
OP2
0101B (5D)
OP1
…
…
1110B (14D)
OP2
1111B (15D)
OP1
Low-speed
packet
1011
Core Network
Client
Network
1001
1010
0110
Edge Router (Ingress/Egress)
with 4-bit address XXXX
Core Router
XXXX
Optical domain
Electrical domain
High Speed >> 40 Gbit/s
IC: Large scale, cheap, memory
Speed limitation < 40 Gbit/s
Complexity, costly, no memory
Integration
Light “Frozen”?
“Opt. Capacitors”?
All-Optical Processing
Eng. of S/W Pro., India 2009
6
Photonic Network – All-optical Routing
Optical Switching Unit
Packet
Output
Signal Processing
(2R, 3R, equalization)
Input
Controlling
Header
Extraction
Contention
Header
Recognition
Buffer
Look-up
Routing
Table
Clock
Extraction
Reconfiguration
Main modules
Optional modules
Delay unit
Splitter
Aim:
1.To optimise the SMZ performance for all-optical functions.
2.To design a bi-directional SMZ and implement it in the router to reduce
components, time and cost.
Eng. of S/W Pro., India 2009
7
Photonic Network - Packet Routing
Exhaustive Correlation
Packet header is compared
with all entries of a routing
table for checking the matching
Client
Network
0111
Low-speed packet
High-speed
packet
Low-speed
packet
1011
Core Network
Client
Network
N2N
1001
1010
0110
bit-wise AND operations
Edge Router (Ingress/Egress)
with 4-bit address XXXX
Robust All-Optical Processing
Core Router
XXXX
Our solution:
Reduce routing
table entries
Minimise
number of AND
operations
Pulse-Position-Modulation
based Header Processing
(PPM-HP)
Eng. of S/W Pro., India 2009
8
Photonic Network - Packet Address
Optical Packet
Clock
Payload
Address
a3
a2
a1
Tb
LSB
1
Add. in
Binary
a0
0
0
1
Decimal value = 9
One Frame of 4-bit RZ OOK
Ts
PPM
0
1
Eng. of S/W Pro., India 2009
2
3
4
5
6
7
8
Bit duration: Tb
9
10 11 12 13 14 15
No. of slot L = 24
Slot duration: Ts = Tb /4
9
Photonic Network - Routing Table
Port 1
1M
Port 2
Conventional routing table
(M = 3 ports)
2N entries
Address
patterns
Decimal
metric
Output
ports
00…000
0
Port 2
00…001
1
Port 1
00…010
2
Port 3
00…011
3
Port 1
00…100
4
Port 3
00…101
5
Port 2
00…110
6
Port 2
00…111
7
Port 1
…
…
…
11…10
2N-2
Port 2
11…11
2N-1
Port 1
Eng. of S/W Pro., India 2009
Port 3
Entry
Positions
(Decimal)
1
1,3,7,…,2N-1
Actual PPM frame
(length 2N slots)
…
0 1 2 3
PPM
2
…
0,5,6,…,2N-2
0 1 2 3
3
2 N-1
4 5 6 7
2 N-1
4 5 6 7
…
2,4,…
0 1 2 3
4 5 6 7
2 N-1
Pulse-position routing table
10
All-optical Packet-switched Router – PPM
Touting Table
A Clk
A Clk
Clock
Extraction
PPMA
PPM Add.
Conversion
CP 1
PL
Header
Extraction
…
A
PPRT
Entry 1
Clk
OSWM
PL
OSW2
A Clk
…
Entry 2
Matched pulse
Entry M
Port 2
Port M
…
OSWC
&2
Synchronisation
…
OSWC
&1
…
CP M
PL
A Clk
Port 1
CP 2
PL
OSW1
All-optical Switch
…
…
&M
OSWC
PPM-HP
Eng. of S/W Pro., India 2009
11
Simulation Software to Model Routers

OptiWave (systems, devices, components)
http://www.optiwave.com/

R-Soft (systems & devices)
http://www.rsoftdesign.com/

Photoss (WDM systems & devices)
http://www.lenge.de/english/index.php

Virtual Photonic Inc. (VPI) (systems & devices)
http://www.vpiphotonics.com/
12
Simulation Software - Matlab




No optical communications tool box
Complex to model optical networks – Need
strong theory
Can be used with other software packages such
as VPI to save modelling and debugging time
Ideal for the end users with a strong
mathematical and programming background
13
Simulation Software - VPI





Very powerful for optical networks and optical
devices modelling
Support C and Matlab
Has visual interface (drag and drop) – e.g.
oscilloscopes etc
Provide extensive simulation examples and
manuals
Online discussion forum
http://forums.vpisystems.com/
14
VPI Simulation Software
Optical Scope
Laser Source
A typical optical switch
BER Tester
SMZ
Eng. of S/W Pro., India 2009
15
Simulation of Devices - SOA

Semiconductor Optical Amplifier


Best to use Matlab: Segmentisation of SOA improves
accuracy
Not possible with the current VPI
Output
signals
Injection current (I)
Output
facet
1
Input
signal
w
H
Input
signals
t=0
t=l/vg
Ni segment segment
L
2
…………
..
…………
….
t=L/vg
segment
5
output
signal
N(1)
N(5)
Input facet of
active region
Eng. of S/W Pro., India 2009
16
Simulation of Devices – SOA Results
1
120
0.8
100
Output gain
Normalised gain
140
0.6
80
0.4
60
0.2
40
0
0
1
2
3
Time (s)
4
Total gain with no input
5
6
-9
x 10
=1530nm
=1540nm
=1550nm
=1560nm
=1565nm
20
1
2
3
4
5
6
Input power (mW)
7
8
9
10
Signal output gain corresponding to
the input power at different wavelengths
17
Optical Switches
Cat.1
Large scale (> 1616)
Slow response (s-ms)
Non-optically controlled
MEMS* (Lucent Tech.)
Bubbles* (Agilent)
Cat.2
Small scale (22)
Fast response (fs-ps)
SMZ* (Japan)
Full-optically controlled
TOAD*
(Princeton)
• Crosstalk
• Contrast
18
VPI – SMZ Switch
OFDL-1
CP1
E2UA
,in (0)
Input
signal
SOA1
UA
LA
Eout,1 = Eout
(p ) + Eout
(p )
UA
Eout
(p )
UA
E1 (0)
C2
Port 1
Tdelay
Tdelay
C1
E2 (p/2)
LA
CP2
C3
Port 2
C4
LA
Eout
(p / 2)
UA
LA
Eout,2 = Eout
(3p / 2) + Eout
(p / 2)
p SOA2
E1LA
,in( / 2)
OFDL-2
PBS – Polarization beam splitter
OFDL– Optical fibre delay line
SMZ switching window
25
20
SMZ gain
15
10
5
0
40
Eng. of S/W Pro., India 2009 CP1=CP2
45
50
55
60
Time (ps)
65
70
75
19
VPI – SMZ Switch
Data pulse train
Optical receiver
Eng. of S/W Pro., India 2009
20
VPI Simulation Software – Inverter Gate
A
A bar
1
0
0
1
CP 1 (CLK)
Input packets
SOA
Output (A bar)
Input (CLK)
SOA
Control pulse
CP 2 (A)
50
Output1
45
40
CR (dB)
35
30
CR of CP
CP
25
CR at output1
20
CR at output2
15
10
5
0
0
1
2
3
4
5
6
7
8
9
Input packet pow er (dBm)
10
11
12
13
Output2
Packet Address Correlator
To carry packet routing decision one needs to check
(correlated) packet address with entries of routing table
Matched
A
PP packet
address
One PPRT
entry
AND
A*B
B
gate
…
…
A
AB
SOA1
B
in
SOA2
Eng. of S/W Pro., India 2009
SW
PPM-HP Router - Clock Extraction
Optical packet
Payload
Clk
Header Clk
Clock Extraction
1 1 0 1 1 0 1 0 1 1 1 1 01 1 1
Clock, header and payload: same intensity, polarization and wavelength
Clock extraction requirements:
• Asynchronous and ultrafast response
• High on/off contrast ratio of extracted clock
Eng. of S/W Pro., India 2009
4
PPM-HP Router - Clock Extraction
Clk
GCP
12
12
SOA1
SOA1

22
12
in
SMZ-1
22
22
SW
Optical fiber span
22
Amplifier
22
in
12
SW
SOA2
Polarization Controller
(PC)
Polarization Beam Splitter
(PBS)
SMZ-2
22
22
22
Attenuator
SOA2
Optical delay
• Self-extraction: packet as the control signal
• High on/off contrast ratio: two switching-stage
Eng. of S/W Pro., India 2009
5
Simulation – Clock Extraction
1st stage
Crosstalk
Extracted
clock
2nd stage
Packet in
13
VPI – Packet Address Conversion
1-N SP Converter

a0 a1 a 2 a3
(a)
SMZ3
SMZ2
SMZ1
SMZ0
a3
))a2
a1
a0
(b)
cSP
2 TS
0
x(t)
Switch
(0)
s
1
2 TS
2
2 TS
1
Switch
(1)
1
Switch
(2)
1
2 TS
3
xPPM(t)
Switch
(3)
PPM-ACM
Eng. of S/W Pro., India 2009
26
12 SMZ Switch with a High Contrast
Ratio
low inter-output CR (< 10 dB)
Output1
SMZ1
Input packets
SMZ1_op2
CP
SMZ2
CP
(SMZ1_op1)
Output2
(SMZ2_op1)
inverter
CEM
CLK
CP
Improved CR (> 32 dB)
CEM: clock extraction module
Fibre Delay Line – Passive using Matlab
Fibre
loop
B
In
A
Out
Switch C
Eye diagram after 200 iterations without
regeneration
Eng. of S/W Pro., India 2009
Fibre Delay Line - Active with Regeneration
Optical amplifier
DSF fibre loop
B
In
A
Switch
Out
C
Clock
Optical regenerator
Eye diagram after 200 iterations with
regeneration
Eng. of S/W Pro., India 2009
SMZ - Simulation Parameters
Eng. of S/W Pro., India 2009
VPI – PPM Routing Table
…
Pe-i
1×2N-2
eB(t)
…
0×Ts
…
…
(2N-2-1)×Ts
…
-1)×Ts
…
(2
N-2
PE-2
EM(t)
PE-M
.
..
…
…
Eng. of S/W Pro., India 2009
..
…
…
SW3
1×2N-2
eD(t)
0×Ts
E2(t)
...
1×2N-2
eC(t)
PE-1
.
..
…
SW4
E1(t)
(2N-2-1)×Ts
e(t)
Pe
Nm×1
…
SW3
…
…
.
..
(2N-2-1)×Ts
1×2N-2
eA(t)
Pe-1
0×Ts
0×Ts
31
VPI Simulation Software – Router
32
Simulation Results-Time
Waveforms
#0
(a)
#1
#4 #12 #20 #28
(a)
input packet at node A
(b)
(b)
(c)
(c)
extracted clock at nodes A
extracted clock at nodes B
FWHM = 2ps
#0
#1
#12
Routing Table
Conventional RT
Single PPM RT
Multiple PPM RTs
VPI – PPM Multiple Routing Table
a4 a3 a2 a1 a0 (N=5)
Check MSBs a4 a3 (X=2)
a4 a3
=10
a4 a3
=11
a4 a3
=01
a4 a3
=00
a2 a1 a 0
EA (24 – 31)
E1A
E2A
EB (16 – 23)
E3A
E1B
E
E2B
EC (8 – 15)
E3B
E1C
E
E2C
ED (0 – 7)
E3C
E1D
E
E2D
E3D
Simulation Results-Multi-hop
…
#26(11010)
#31(11111)
…
…
B
A
o/p2
…
D
o/p1
o/p3
#0(00000)
#9(01001)
o/p2
C
…
#14(01110)
#13(01101)
#5(00101)
electrical low-speed data packet
optical packet
edge node
core node
An optical core network with 32 edge nodes (4 hops)
Simulation - Multiple-hop Routing
Node/Router
2
Node/Router
2
B
0 1 2
3 4 5 6
M
7 8 9 10 11 12 13 14 15
Node/Router 3
Node/Router 1
Node/Router 1
B
B: broadcast
M: multicast
B
M
• Signal intensity is varied
Node/Router 3
• Noise level is increased
37
SMZ - Simulation Results
Inter-channel crosstalk
Eng. of S/W Pro., India 2009
Eye diagram
Simulation Results – Network
Performance
Multiple-hop OSNR
OSNR1
OSNR0
Source
Edge-node
# Source
G1 Pase ,1
Pin
G0 1 L0
Pase ,0
OS
G0 L0 Pin
1 L0 Pase ,0
GH Pase ,H
G2 Pase , 2
1 L1
OS
attn.
…
1 LH
G0G1G2 L0 L1 Pin
G0G1 L0 Pin
G1G2 L0 L1 Pase ,0 + G2 L1 Pase ,1 + Pase ,2
G1 L0 Pase ,0 + Pase ,1
G0G1 L0 L1 Pin
G1 L0 L1 Pase ,0 + 1 L1 Pase ,1
0
T heoretical, OSNR = 34dB
40
0
T heoretical, OSNR = 40dB
0
Simulation, OSNR 0 = 28dB
OSNR (dB)
35
Simulation, OSNR 0 = 34dB
30
Simulation, OSNR 0 = 40dB
25
20
15
10
0
1
# Target
HP
T heoretical, OSNR = 28dB
Eng. of S/W Pro., India 2009
Target
Edge-node
attn.
45
Predicted &
simulated OSNRs
1 LH +1
attn.
OS
HP
HP
G0 Pin
Pase ,0
OSNRH
OSNR2
2
3
Number of hops
4
5
…
attn. Attenuator
Optical fiber
Optical pre-amplifier
1xM All-optical Packet-switched
WDM Router
PK1@1
PK1@1
PPM-HP 1
PK2@2
e1
PK3@3
...
PKM @L
Input
PK2@2
D
E
M
U
X
…
…
…
L
…
E1 E2 E3 EM
PPM-HP 2
e2
…
…
1
2
…
L
PK1@1
PK2@2
WDM
MUX
WDM
Output 1
PKM @L
MUX
Output 2
...
…
E1 E2 E3 EM
PKM @L
PPM-HP L
eM
1
2
…
…
E1 E2 E3 EM
L: The numbers of input wavelengths
M: The numbers of the output ports
(In this simulation L = 2 and M =3)
1
2
…
L
WDM
MUX
Output M
Simulation Results- Time Waveforms
Packets at the inputs of the WDM router
Packets observed at the output 2 of the WDM router
Optical OFDM


Orthogonal Frequency Division Multiplexing (OFDM)

Harmonically related narrowband sub-carriers

The sub-carriers spaced by 1/Ts

The peak of each sub-carrier coincides with trough of other
sub-carriers
Splitting a high-speed data stream into a number
of low-speed streams

Different sub-carrier transmitted simultaneously
42
Applications of OOFDM Modems

Access and local area networks - IMDD modems

Future high-capacity long-haul networks

Coherent modems: Combating optical fibers dispersion and
polarization mode dispersion
43
OOFDM Modems - Modelling
Matlab: easy to model the OFDM modem

32-QAM modulation
5
4
3
2
1
IMAG
0
-1
-2
-3
-4
-5
-5

-4
-3
-2
-1
0
REAL
1
2
3
32-QAM detectionm with additive noise
4
5
8
6
4
2
IMAG

0
-2
-4
-6
-8
-8
-6
-4
-2
0
REAL
2
4
6
8
44
OOFDM Modems – Modelling
VPI Screen shots (OTDM to WDM Transmultiplexers)
45
Software Modelling



VPI is not very flexible when it come to
modelling algorithm, consequently Matlab code
can be used as a part of VPI
VPI has visual interface (drag and drop), with
the ability to use test and measurement tools
Solid mathematical background is essential to
fully utilise VPI, otherwise it could lead to misunderstanding and consequently obtaining
wrong results
46
It All Starts From An Initial Idea
Simulation softwares enables us to develop new ideas & gain
some insight before designing systems
Output packets
Optical Switch
Input packets
Pout, 1(t)
SMZ1
τtot
(1-2α)P(t + τtot)
Pin(t)
Absorber
Pout, 2(t)
SMZ2
τCEM
SMZM
αP(t + τCEM)
PPM-HEM
Pout, M(t)
XPPM(t)
OSC
αc(t)
PPRT
CEM
m1(t)
c(t)
E1(t)
&1
τPPRT
e(t)
E2(t)
EM(t)
m2(t)
&2
mM(t)
&M
System block diagram
Simulation layout
Experimental setup
47
Conclusions
What one should look for in simulation software
packages in photonic switching network:
1. Easy to learn and use
2. Lower PC hardware specifications
3. Fast and as realistic as possible
4. Quality technical support, training and online discussion forums
5. Updateability
6. Compatibility with other simulation softwares
Eng. of S/W Pro., India 2009
48
Special Thanks for
Dr. Wai Pang Ng
Dr. Hoa Le Minh
Dr M F Chaing
A. Shalaby
M. A. Jarajreh
Thank you for your attention !
Any questions?
Eng. of S/W Pro., India 2009
50
Future Contact

Email: [email protected]

Web: http://soe.unn.ac.uk/ocr/

Tel: 00 44 191 227 4902
Eng. of S/W Pro., India 2009
51