Transcript Document
The chromosomal and genetic abnormalities of cancer: Which one is the cause? Asilomar, Jan. 7-9, 2007 Peter Duesberg, Alice Fabarius, Ruediger Hehlmann and Ruhong Li 1 Cancer: a genetic or a chromosomal disease? It is known for over 100 y ea rs t ha t c ancer s ar e aneuploid, ha ving too many and r ar el y to o few chr omosomes. It is als o k nown for over 100 ye ars t hat r adiat ion car cinoge ns, X-r ays, ar e an aneu ploidogen s, and for over 80 year s t ha t t hey are al so mut ag en s. Fur t her , it is known fr om over 3 0 y ea rs of s eq uenc ing t ha t c ancer s c ont ain a lot of mut at ions. But it is s t ill de ba te d, whet her c ancer is a g enet ic or a chr omosomal diseas e. 2 The genetic cancer theory The deb at e o ver t he causes of ca ncer is c urre nt ly he avily bia sed i n f avour of t he ge net ic th eory – so h eavily th at t her e is no funding f or t he c hr omosomal t he or y. The gen et ic ca ncer t heory p ost ula t es t ha t 2- 6 spec if ic mutat ions ar e suff icien t to ca use ca ncer . Chromosomal a lt er at ions, if men t ioned a t a ll, a re considere d secondary e ven ts (se e nex t 2 slid es). Since chr omosomal al te ra ti ons are n ot her it able and t hus not pa rt of convent ional ge net ic condit ioning, t he y ar e simply d isr egarded as pr imary cau ses of cancer. 3 The genetic cancer theory According to the NCI 2-6 mutations cause cancer [NCI: Understanding Cancer Series, 2007]. 4 The genetic theory turns a blind eye to cancer-specific aneuploidy According to the NCI and research supported by it, mutations cause cancer by changing the cell’s morphology and “color” – but not its karyotype. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. 5 NCI website 2006: Karyotype normal = ca = 22 chromosome pairs + X,Y Yet, the karyotypes of cancers are very abnormal Karyotype of a human colon cancer: Highly aneuploid, with 15 rearranged marker chromosomes Karyotype of a diploid human cell (male) 6 Karyotype of a breast cancer cell 7 MDA231-4 Landmarks of cancer not explained by genetic theory 1) The chr omosomes of can ce r cells ar e a ne uploid, m ost a re hyper-d iploid s ome are hypo-d iploid. 2) Maligna ncy is p roport ional t o th e de gr ee of a neuploidy. 3) Cancers c onta in ty pe-sp ecific, me ta st asis-sp ecific, and drug res ist ance- specif ic chromosome a lt era t ions. 4) The chr omosomes of can ce rs c onsist of clonal an d n on- clona l aneuploidies, and a r e t hus i nher ent ly unst ab le. 8 Landmarks of carcinogenesis not explained by genetic theory 1) The e xist e nce of n on- mut age nic car cinogens: vinyl chloride, aro mati c hydrocarbons and as be st os. 2) Car cinogens, mut agenic a nd non- muta genic, induce ra ndom aneup loidies, which precede and se gre gat e w it h cancer. 3) The level of ra ndom an eup loidy det er mines t he c ancer ri sk. 4) Once init iat ed, ca r cinogenesis proceeds a ut o cata lyt ical ly: First slowly wit hout phenotypes and t hen ever fast er wit h e vermore- malignant phenot ypes – ju st l ike a chemical chain r eaction. Example, cancers following at omic b omb- radiations o nly decades la t e r. Not e : Carcinogenesis is not compatib le wit h a seque nce of s pecific mut ati ons. Mut ations ar e s tab le and not progressive. 9 The genetic cancer theory also has genetic Achilles heels Despit e 30 y ear s of t r ying, t here is st ill no unambiguous evidence t ha t 2- 6 mut an t g enes f rom c an cers t ra nsfor m diploid c ells w ith out k ary oty pe al t er a t ions (see below). Numerous t ra nsgenic m ouse st ra ins c ar ry o ne or more put at ive oncogenes in t heir ger mlines, b ut t hey p r opaga t e nor mally a nd t heir cancer r isks ar e simila r t o t hose of ot her la b mice. The genet ic t heory pr edicts high ra tes of solid c ancers i n newborns fro m c omplement ary s ubs ets of t ra nsfor ming genes inher it ed fr om par ent s. But , t here is p ra ct ical ly n o ca ncer in newborns (se e next) . 10 Age-dependent incidence of cancer Age <1 1-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >85 Incidence 0.24 0.22 0.12 0.13 0.21 0.31 0.44 0.59 0.88 1.48 2.70 5.37 9.47 15.41 22.64 28.29 31.23 30.83 29.77 11 Chromosomal cancer theory Car cinoge ns i nit iat e c ar cinogenesis by ra ndom an eu ploidies, br ea king chromosomes o r damag ing t he sp indle ap par a t us. Ane uploidy t hen des ta bilizes t he ka r yot ype, m isba la ncing t ea ms of pr ot eins t ha t s ynt hesize , se gr egat e and r epair chr omosomes. Ane uploidy is t hus a st eady source of chr omosomal v ar iat ions, fr om which , in classical Dar winian t er ms, c ancer-s pecific aneuploidies evolve a utoc a t a lytic a lly o ver t ime. The r at es at w hich ca ncer - specific an euploidies ev olve depend on t he inst a bilit y of t he r espect ive ka r yot ype. Cancer-s pec ific a ne uploidies gen er a t e ca ncer - specific phenoty pes, su ch as meta st asis an d d rug res ist an ce, by alt ering t he dosag e and ex press ions o f 1000 s of genes – jus t like t risomy 21 genera t es Down s yndrome. 12 Carcinogenesis as chain reaction of aneuploidizations 13 Despite questioning the orthodoxy, I expected a full absolution for this attractive new cancer theory – as on previous occasions … 14 15 Instead – The empire strikes back … 16 Coulter et al. now claim 6 mutations are “sufficient” for tumorigenicity Acc ording t o Coult er et al. 6 mut ant genes ar e “suff icient to convert n ormal h uman ce lls to a t umorigen ic s ta t e.” (Ca Res 2005) – 3 mor e th an C oult er, Weinberg e t a l. cla imed in 1999. The 6 genes w er e ar t ificially a ct ivat ed c ellula r t el omera se, cyclin, cyclin k inase, p 53 , myc - , an d ras genes t hat were int roduced int o normal h uman ce lls in ret r ovir us vectors . Since tu morige nicity was obse rved in nude mice about 2 mont hs la t er, t he au t hors c onclude d, “t he t umors gr ew t oo f as t t o a llow for t he s elect ion of a ddit iona l even t s”. 17 But Coulter also provides evidence that 6 mutations are not “sufficient” 1) Only 5 out o f 100,000 “convert ed” cell s f orm 3 dimensiona lly gr owing f oci in vit r o, a s urr ogat e f or t umor ige nicity . 2) I nocula ti on of 10 million conver t ed c ell s was u sed (nec essar y?) to ge ner at e on e t umor in mice. 3) The s olid tu mors were re port ed t o have “large nucle i” or “large p olymorph ic n uclei”. Bu t large nucle i ar e t he phen oty pe s of hyper-d iploid aneu ploidies . 18 The chromosomal theory offers testable explanations Coulte r’s ar t ificia ll y a cti vat ed ge nes may dest abi liz e t he kar yot ype of “converte d human cel ls ”. The ce ll s would bec ome r andomly aneuploid. 19 The chromosomes of Coulter’s “converted cells” are unstable Metas (28) Karyotyp es of the Mu6 line 1 1 1 1 1 3 1 1 1 1 1 15 42,X,-Y,-17,-19,-20[1] 45,X,-Y[1] 45,XY,-18[1] 46,XY,-2,+del(2)x2,-5 [1] 46,XY,-14,+17,-18,+19x3,-20,-22[1] 47,XY,+20[3] 47,XY,+19[1] 47,XY,+(del(1)[1] 48,XXY,+7[1] 48,XY,+del(2)x2[1] 49,XY,+del(20)x3[1] 46,XY[15] 20 Conclusion: Half of cells of Mu6 line are randomly aneuploid. Karyotype of an aneuploid Mu6 cell Trisomy 7, and a marker derived from Chrom. 1 21 Chromosomal theory explains low transformation rates of “converted” cells 1) Foci wit h t ra nsforma ti on- spec if ic a neuploidies would evolve spont ane ously fr om r andom a neuploidies at ra tes of 5 per 100 ,000 cell s in vit r o. 2) Tr ansformat ion- spec if ic a neuploidies of foci would be clona l or “non-ra ndom” – a landmark of cancer . 3) Some fo ci ma y be int rinsically drug r es ist ant o wing to r esist ance-sp ec if ic a neu ploidies – anot her l andmark of cancer . 22 By contrast the mutation theory predicts Foci of t r ansf orme d c ells a re – 1) eit her diploid o r r an domly an eu ploid – j ust like t he mot he r cell , 2) drug s ensit ive – j ust like t he Mu6 line. No ex plana ti on f or lo w r at es of t r an sformat ion, beca us e 6 g enes a r e sa id t o be “s uff icie nt ”. 23 Testing spontaneous appearance of 3-dimensional foci: about 1 per 100,000 Mu6 cells Qu i c k T i m e ™ a n d a T I F F (Un c o m p re s s e d ) d e c o m p re s s o r a re n e e d e d t o s e e t h i s p i c tu re . Mu6 focus Mu6 monolayer 24 Clonal aneuploidies of 8 Mu6 foci: some stable others evolving Table 1. Karyotypes and intrinsic drug resistance of 8 transfor med foci generated by the human muscle cell line Mu6. Cell Met. Aneuploid clonal or sub-clonal Aneuploid non-clonal Mu6 28 47,XY,+20[3] 42,X,-Y,-17,-19,-20[1] 45,X,-Y[1] 45,XY,-18[1] 46,XY,-2,+del(2)x2,-5 [1] 46,XY,-14,+17,-18,+19x3,-20,-22[1] 47,XY,+19[1] 47,XY,+(del(1)[1] 48,XXY,+7[1] 48,XY,+del(2)x2[1] 49,XY,+del(20)x3[1] F1 34 47,XY,+20[10] 46,XY,del(17)[1] 50,XXYY,+1,+5,-8,+12,-13,+14[4] 49, XXYY,+1,+5,-8,+12,-13,+14,-18[1] 49,XXYY,+1,-8,+12,-13,+t(14;15)[1] 50,XXYY,+1,-8,-10,+del(12)x2, +14,+t(14;15),-15[1] 50,XXY,+1,+5,+12,-13,+14[1] ->[8] 47,XY,+7[4] 46,XY,+7,-21[1] 48,XXY,+7[1] ->[6] Dipl. [15] ArC S [9] pS/R 25 F. 2 30 F. 3 20* F. 4 20* F. 5 20* 48,XXY,+7[13] 47,XY,+7[2] 47,XXY,+7,-21[1] 49,XXY,+7,+del(1)[1] ->[17] 50,XXYY,+1,+5,-8,+12,-13,+14[4] 45,XXYYY,+1,+5,-8,-13,-16,-18,-20,-21[1] 47,XXYY,+1,-3,+5,-8,-11,+12,-13[1] 47,XXYY,+1,+5,-8,+12,-13,-13,+14,-16,-19[1] 49,XXY,+1,+5,-8,+12,-13,+14[1] ->[8] 47,XY,+20[3] 47,XY,+20[6] 47,XY,ctb(10q),+20[1] 47,XY,ctb(4q),+20[1] 48,XY+6,+20,del(20p)[1] 48,XY,+8,+20[1] 48,XY,+7,+20[2] 50,XXY,+8,+12,+20[1] ->[13] 48,XXY,+7[2] 49,XY,+9,+11,+13[2] 48,XXY,+7[5] 48,XXY,+7,ctb(4p),+minx2[1] 49,XXY,+7,+21[2] 49,XXY,+7,+21,ctb(2p),ctb(14q)[1] ->[9] 47,XY,+20[2] 47,XY,+20,del(20)[1] ->[3] 47,XY,+20[1] 47,XY,+20,add(2q)[2] 49,XXY,+20,+21[1] 49,XXY,+20,+22[2] 48,XY,+1,+20,+minx3[1] ->[7] 48,XXY,+7[1] 48,XXY,+7,+dmin[1] ->[2] [2] pS/R 45,XY,-15[1] [3] S 44,X,-Y,-1[1] [7] S 45,X,-Y[1] 46,XY,+min[1] [9] S 26 F. 6 40* F. 7 20* F. 8 20* 46,XY,+min[1] 46,XY,+dmin[1] –> [2] 49,XXY,+1,+5,-8,+12,-13,+14[1] 50,XXYY,+1,+5,-8,+12,-13,+14[14] 50,XXYY,+1,+5,-8,+12,-13,+14,+min[1] 50,XXYY,+1,+5,-8,+12,13,+14, +min,+dmin[1] 100,XXXXYYYY,+1,+1,+5,+5,-8,-8, +12,+12, -13,-13,+14,+14[1] 100,XXXXYYYY,+1,+1,+5,+5,-8,-8 +12,+12, -13,-13,+14,+14,+min[1] –> [19] 46,XY,+min,+dmin[1] 46,XY,+minx3[1] 46,XY,ctb(1+),ctb(4p),+dmin[1] 48,XY,+1,+dmin,minx2[2] 49,XXYY,+1,+5,+min,+dmin[1] 50,XXYY,+1,t(3;7),+5,+min,+dmin[1] 52,XXYY,+1,+5,-12,+14,+min,+dmin[1] 98,XXYY,ctb(8p),+minx2[1] 98,XXYY,+minx3[1] 100,XXYY,+minx2,+dminx2,ctb(1), ctb(20)[1] 102,XXYY,+dmin[1] ->[12] 49,XXY,+1,+5[2] 46,XY,+1,+5,-8,-13,+14,-19[5] 43,X,-Y,-3,+5,-8,-19,+min[1] ->[6] 45,XY,der(3)t(3;12)(q;p), der(12)t(3;12)(q;p)[1] [18] R 46,XY,t(3;7)[1] [5] R [8] R 45,XY,-18[1] 45,XY,-12[1] 46,XY,+min[1] 47,XXY,+1,-11[1] 48,XXY,+7[1] 58,XXYY,?[1] Abbreviations: F. means focus, Met. means metaphases, Dipl. means diploid, ArC means cytosine arabinoside, S is sensitive, pS is partially sensitive, R is resistant, and pS/R is a partially sensitive culture becoming resistant. Bold [numbers] indicate the sums of identical or related metaphases per clonal aneuploidy. *Marks karyotypes analyzed by Giemsa staining instead of by hybridization with color-coded, chromosome-specific DNA. 27 Moreover, 3 of 8 foci are intrinsically resistant to ara-C. Mu6 line is ara-C- sensitive. Back to Table. 28 In sum the 6 mutations were not “sufficient”. Instead… Art if icia lly acti vat ed cel lular gen es de st ab ilize t he kar yoty pe and ge ner at e r a ndom aneu ploidy – acti ng like c ar cinogens. Specif ic, c lona lly sele ct ed aneu ploidies g ener at e 3 dimensiona l gr owt h, a lias foci in vitr o. Owing to t he hi gh kar yoty pic insta bil it y of Mu6 c ells , clona lly sele ct ed, aneu ploid st emline s conti nue to evolve dur ing focus format ion – a s in na t ur al car cinogene sis. Some t r ansf or ma ti on- spe cific aneu ploidies g ener at e int rinsic, can cer - spec if ic dru g res ist ance – ag ain a s in nat ur al c ancers . 29 So – Which one is the cause? I t would a ppear t hat ch r omosomal al t er at ions are t he gene ti c b as is of car cinogenes is. Mut at ions would be conseq uen ces of canc er- spe cific a neu ploidy, which des t abilizes t ea ms of p r ot eins t hat syn th es ize an d r ep air gene s. 30 The chromosomal theory of cancer can be falsified by diploid cancers. END 31 Spontaneous focus formation of Mu6 clone 3 Transformation rate: ~ 1 per 10^6 cells 32