Kondo Physics from a Quantum Information Perspective

Download Report

Transcript Kondo Physics from a Quantum Information Perspective

Kondo Physics from a Quantum Information Perspective Pasquale Sodano International Institute of Physics, Natal, Brazil

1

Abolfazl Bayat UCL (UK) Sougato Bose UCL (UK) Henrik Johannesson Gothenburg (Sweden)

2

References An order parameter for impurity systems at quantum criticality

A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication.

Entanglement probe of two-impurity Kondo physics in a spin chain

A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) •

Entanglement Routers Using Macroscopic Singlets

A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) •

Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model

A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) •

Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain

P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010) 3

Contents of the Talk Negativity as an Entanglement Measure Single Kondo Impurity Model Application: Quantum Router Two Impurity Kondo model: Entanglement Two Impurity Kondo model: Entanglement Spectrum

4

Entanglement of Mixed States Separable states:

AB

 

i p i

i A

 

i B p i

Entangled states:

AB

 

i

 0 , 

i p i

i A

 

i B p i

 1

How to quantify entanglement for a general mixed state?

There is not a unique entanglement measure

5

Negativity

Separable:

i

p i

i A

 

i B

T A

i

p i

( 

i A

)

t

 

i B

Valid density matrix

T A

 0

Entangled:

T A

    (   0)

Negativity:

N

(  )  2    0  , 

T A

    6

Gapped Systems Excited states

    : 

i

Ground state

x

j x

e

 |

i

 

j

|

The intrinsic length scale of the system impose an exponential decay

7

Gapless Systems

N

  :   0

Continuum of excited states Ground state

i x

j x

 |

i

j

|  

There is no length scale in the system so correlations decay algebraically

8

Kondo Physics

K

K

T K

Despite the gapless nature of the Kondo system, we have a length scale in the model

9

Realization of Kondo Effect Semiconductor quantum dots D. G. Gordon et al. Nature 391, 156 (1998).

S.M. Cronenwett, Science 281, 540 (1998).

Carbon nanotubes J. Nygard, et al. Nature 408, 342 (2000).

M. Buitelaar, Phys. Rev. Lett. 88, 156801 (2002).

Individual molecules J. Park, et al. Nature 417, 722 (2002).

W. Liang, et al, Nature 417, 725–729 (2002).

10

Kondo Spin Chain

H

J

' (

J

1  1 .

 2 

J

2  1 .

 3 ) 

i

  2

J

1 

i

.

i

 1 

J

2 

i

.

i

 2

J

2

J

1 

J

2

c

 0 .

2412 : Kondo (gapless)

J

2

J

1 

J

2

c

: Dimer (gapfull)

E. S. Sorensen et al., J. Stat. Mech., P08003 (2007)

11

Entanglement as a Witness of the Cloud A B Impurity L

K

(

J

' ) 

e

 /

J

'

L

 

K

:

E SA

 1 

E SB

 0

L

 

K

:

E SA

 1 

E SB

 0

L

 

K

:

E SA

 1 

E SB

 0 12

Entanglement versus Length Entanglement decays exponentially with length

13

Impurity A Scaling B L N-L-1 Kondo Regime:

E

(

L

, 

K

,

N

) 

E

( 

N K

,

L N

)

Dimer Regime:

E

(

L

,  ,

N

) 

E

( 

L K

,

N L

) 14

Scaling of the Kondo Cloud

K

K

e

 /

J

'

N

K

 4

Kondo Phase: Dimer Phase:

E

(

L

, 

K

,

N

) 

E

( 

N K E

(

L

,  ,

N

) ,

L N

) 15

Application: Quantum Router Converting useless entanglement into useful one through quantum quench

16

Simple Example

J

'

L

  1 .

  2

J

'

R

  3 .

  4

J m

J

'

L

J

'

R J m

  2 .

  3  ( 0 )        (

t

) 

e

iHt

 ( 0 )

E

14 (

t

)  max{ 0 , 1  3 cos( 4

J m t

) } 4 17

Extended Singlet

J

'

opt

K

(

J

'

opt

) 

N

 1

With tuning J’ we can generate a proper cloud which extends till the end of the chain

18

J

'

L

Quench Dynamics

J m J

'

R

L

(

J

'

L

) 

N L

 1  ( 0 ) 

GS L

GS R

 (

t

) 

e

iH LR t

 ( 0 )   1

N

(

t

)

R

(

J

'

R

) 

N R

 1

E

1

N

(

t

) 19

Attainable Entanglement 1- Entanglement dynamics is very long lived and oscillatory 2- maximal entanglement attains a constant values for large chains 3- The optimal time which entanglement peaks is linear

20

Distance Independence For simplicity take a symmetric composite:

J

'

J m J

' 

L

(

J

' )  (

N

 2 ) / 2 

R

(

J

' )  (

N

 2 ) / 2

E

(

t

,

N

,

J

' ) 

E

(

t

,

N

,  ) 

t E

(

N

,

N

 ) 

t E

(

N

,

N

2

N

 2 ) 21

J

'

L

Optimal Quench

J

'

L J m J

'

R J m

J

'

L

J

'

R J m J

'

R J m

  (

N

)(

J

'

L

J

'

R

) 

K

e

 /

J

' 

J

'  1 log 2   (

N

) 

Log

2 (

N

2 ) 22

Optimal Parameter

23

Non-Kondo Singlets (Dimer Regime)

J

'

L J m J

'

R

Clouds are absent K: Kondo (J2=0) D: Dimer (J2=0.42)

24

J

'

L

Asymmetric Chains

J m J

'

R

L

(

J

'

L

) 

N L

 1 

R

(

J

'

R

) 

N R

 1 25

Entanglement in Asymmetric Chains Symmetric geometry gives the best output

26

Entanglement Router

27

Two Impurity Kondo Model

28

Two Impurity Kondo Model

H L H R H I

  

J

' (

J

'

L

 1

L

.

 2

L J

' (

J

'

R

 1

R

.

 2

R

J

2  1

L

.

 3

L

)  

J

2  1

R

.

 3

R

) 

i N L

   2

J

1  2

i L

.

i L

 1

i N R

   2 2

J

1 

i R

.

i R

 1 

J

2 

i L

.

i L

 2 

J

2 

i R

.

i R

 2

J I

 1

L

.

 1

R

RKKY interaction

29

Impurities

GS

Entanglement

 1

L

1

R

p

     1  3

p k

   0 ,

T k T k p

 1 2

N

(  1

L

1

R

)  0

p

 1 2

N

(  1

L

1

R

)  0 30

Entanglement of Impurities

J

'

J I J

'

J I c

Entanglement can be used as the order parameter for differentiating phases

31

Scaling at the Phase Transition

J I c

T K

 1 

K

e

  /

J

'

The critical RKKY coupling scales just as Kondo temperature does

32

 1

L

1

R

p

 

Entropy of Impurities

    1 3

p k

   0 ,

T k T k S

(  1

L

, 1

R

)  

p

log(

p

)  ( 1 

p

) log( 1 

p

)

J I J I J I

  0 :

S

(  1

L

, 1

R

0 :

S

(  1

L

, 1

R

 0 :

S

(  1

L

, 1

R

) ) )    log( 3 ) 2 0

J I J I J I

 0 :

p

 0  0 :

p

 1/4  0 :

p

 1

Triplet Identity Singlet

33

Impurity-Block Entanglement

34

Block-Block Entanglement

35

2 nd Order Phase Transition

36

Order Parameter for Two Impurity Kondo Model

37

Order Parameter Order parameter is: 1- Observable 2- Is zero in one phase and non-zero in the other 3- Scales at criticality Landau-Ginzburg paradigm: 4- Order parameter is local 5- Order parameter is associated with a symmetry breaking

38

Entanglement Spectrum Entanglement spectrum:

39

Entanglement Spectrum

J I

N A =N B =400 J’=0.4

J I

N A =600, N B =200 J’=0.4

40

Schmidt gap: Schmidt Gap

J I

41

Thermodynamic Behaviour J’=0.4

J’=0.5

J I J I

In the thermodynamic limit Schmidt gap takes zero in the RKKY regime

42

Diverging Derivative

J I J I

In the thermodynamic limit the first derivative of Schmidt gap diverges

43

Diverging Kondo Length

J I

44

Finite Size Scaling

S

N

S N

 /    /  

f f

(| (|

J I J I

 

J J I c I c

| |

N

1 / 

N

1 /  ) )  

S

 |   |

J I J I

J I c

J I c

|  |   (

J I

J I c

)

N

0 .

5     0 .

2 2 45

Schmidt Gap as an Observable

46

Summary Negativity is enough to determine the Kondo length and the scaling of the Kondo impurity problems.

By tuning the Kondo cloud one can route distance independent entanglement between multiple users via a single bond quench.

Negativity also captures the quantum phase transition in two impurity Kondo model.

Schmidt gap, as an observable, shows scaling with the right exponents at the critical point of the two Impurity Kondo model.

47

References An order parameter for impurity systems at quantum criticality

A. Bayat, H. Johannesson, S. Bose, P. Sodano To appear in Nature Communication.

Entanglement probe of two-impurity Kondo physics in a spin chain

A. Bayat, S. Bose, P. Sodano, H. Johannesson, Phys. Rev. Lett. 109, 066403 (2012) •

Entanglement Routers Using Macroscopic Singlets

A. Bayat, S. Bose, P. Sodano, Phys. Rev. Lett. 105, 187204 (2010) •

Negativity as the Entanglement Measure to Probe the Kondo Regime in the Spin-Chain Kondo Model

A. Bayat, P. Sodano, S. Bose, Phys. Rev. B 81, 064429 (2010) •

Kondo Cloud Mediated Long Range Entanglement After Local Quench in a Spin Chain

P. Sodano, A. Bayat, S. Bose Phys. Rev. B 81, 100412(R) (2010) 48