LaPLACE TRANSFORM AND TRANSFER FUNCTIONSX
Download
Report
Transcript LaPLACE TRANSFORM AND TRANSFER FUNCTIONSX
CHE 185 – PROCESS
CONTROL AND DYNAMICS
LaPLACE TRANSFORM AND TRANSFER
FUNCTION FUNDAMENTALS
LaPLACE TRANSFORMS
• PROVIDE VALUABLE INSIGHT INTO PROCESS
DYNAMICS AND THE DYNAMICS OF FEEDBACK
SYSTEMS.
• PROVIDE A MAJOR PORTION OF THE
TERMINOLOGY OF THE PROCESS CONTROL
PROFESSION.
LaPLACE TRANSFORMS
• DEFINITION
F (s) L[ f (t )] f (t )e dt
st
0
• TIME (t) IS REPLACED BY A NEW INDEPENDENT
VARIABLE (s)
• WE CALL s THE LAPLACE TRANSFORM VARIABLE
LaPLACE TRANSFORMS
• WHY WORK IN THE LaPLACE DOMAIN
• OFTEN MORE CONVENIENT TO WORK IN LAPLACE
DOMAIN THAN TIME DOMAIN
• TIME DOMAIN ORDINARY DIFFERENTIAL EQUATIONS I
Nt
• LaPLACE DOMAIN ALGEBRAIC EQUATIONS IN s
LaPLACE TRANSFORMS
• GENERAL SOLUTION APPROACH
• LaPLACE TRANSFORMS ARE USED FOR SOLUTION OF
LINEAR ODE”S
• GIVEN A LINEAR FUNCTION f (t) WHICH IS
DEFINED FOR ALL POSITIVE VALUES OF t, t > 0.
• CONVERT MODEL TO LAPLACE DOMAIN
• TO OBTAIN THE LaPLACE TRANSFORM, MULTIPLY BY
e−st AND INTEGRATE FROM ZERO TO INFINITY
• 𝐹 𝑠 =
∞ −𝑠𝑡
𝑒 𝑓
0
𝑡 𝑑𝑡 OR L(f) = F(s)
LaPLACE TRANSFORMS
• GENERAL SOLUTION APPROACH
• SOLVE PROBLEM IN LAPLACE DOMAIN
• INVERT SOLUTION BACK TO TIME DOMAIN
• APPLY INVERSE LAPLACE TRANSFORM TO DIRECTLY
DETERMINE y(t).
• TABLES OF LAPLACE TRANSFORMS ARE AVAILABLE.
LaPLACE TRANSFORMS
• DERIVATION OF SOME COMMONLY USED
LaPLACE TRANSFORMS
• CONSTANT FUNCTION: f(t) = a
F ( s ) L( a )
0
a st
ae dt e
s
st
0
a a
0
s s
• EXPONENTIAL FUNCTION: f(t) = e-bt
F ( s ) L(e ) e e dt e
bt
0
bt st
0
( b s )t
1
dt
e ( b s ) t
bs
0
1
sb
LaPLACE TRANSFORMS
• DERIVATION OF SOME COMMONLY USED
LaPLACE TRANSFORMS
LaPLACE TRANSFORMS
• DERIVATION OF SOME COMMONLY USED
LaPLACE TRANSFORMS
• DERIVATIVES AND INTEGRALS
df df st
st
st
L
e dt f (t )e sdt f (t )e
sF ( s) f (0)
0
0
dt 0 dt
dn f n
L n s F ( s) s n 1 f (0) s n 2 f (1) (0) sf ( n 2) (0) f ( n1) (0)
dt
t
t
1
st
L f (t*)dt * f (t*)dt * e dt F ( s)
0
0 0
s
LaPLACE TRANSFORMS
• SOME COMMONLY USED
MORE LaPLACE TRANSFORMS
• IMPULSE FUNCTION - ZERO WIDTH AND TOTAL
INTEGRAL = C
• SUPERPOSITION
• FINAL VALUE THEOREM
If lim y (t ) exists
t
lim y (t ) lim[ sY ( s )]
• INITIAL VALUE THEOREM
lim y (t ) lim[ sY ( s )]
t 0
s
t
s 0
INITIAL- AND FINAL-VALUE THEOREMS
EXAMPLE
• LAPLACE TRANSFORM
OF THE FUNCTION.
• APPLY FINAL-VALUE
THEOREM
• APPLY INITIAL-VALUE
THEOREM
MORE LaPLACE TRANSFORMS
• TIME DELAY
• SUPERPOSITION
L[af (t ) bg(t )] aF(s) bG(s)
LaPLACE TRANSFORMS
• SOME COMMONLY USED LaPLACE TRANSFORMS
• DERIVATIVE
• OR FOR HIGHER LEVEL DERIVATIVES
LaPLACE TRANSFORMS
• SOME COMMONLY USED LaPLACE TRANSFORMS
• INTEGRALS
• DEAD TIME FOR Θ UNITS OF TIME:
LaPLACE TRANSFORMS
•
•
•
•
•
PULSE FUNCTION
𝑢 𝑡 = 0 𝑡 < 𝑡0
𝑢 𝑡 = 𝐴 𝑡0 ≤ 𝑡0 ≤ 𝑡0 + ∆𝑡
𝑢 𝑡 = 0 𝑡 ≥ 𝑡0 + 𝑡
SET UP A COMPOSITE
EQUATION TO GET THE
LaPLACIAN
• 𝑦 𝑡 = 𝐴(𝛾 𝑡 − 𝛾 𝑡 − Δ𝑡 → 𝐴
• 𝑌 𝑠 = (1 − 𝑒 −𝑠 )
𝐴
𝑠
t
A
1
𝑠
1
−
𝑠
−𝑒
𝑠
= 𝑌(𝑠)
LaPLACE TRANSFORMS
• EXAMPLE, FOR LINEAR ODE:
dy
5 4y 2
dt
y (0) 1
• LAPLACE TRANSFORM
2
5[ sY ( s ) y (0)] 4Y ( s)
s
LaPLACE TRANSFORMS
• SUBSTITUTE Y(0) & REARRANGE:
5s 2
s 0.4
Y ( s)
s(5s 4) s( s 0.8)
• INVERSE LAPLACE TRANSFORM
s 0.4
y(t ) L [Y (s)] L
s
(
s
0
.
8
)
1
1
PARTIAL FRACTION EXPANSIONS
•
EXPAND INTO A TERM FOR
EACH FACTOR IN THE
DENOMINATOR.
•
RECOMBINE RHS
•
EQUATE TERMS IN s AND
CONSTANT TERMS. SOLVE.
•
EACH TERM IS IN A FORM SO
THAT INVERSE LaPLACE
TRANSFORMS AN BE APPLIED.
PARTIAL FRACTION EXPANSIONS
• HEAVISIDE METHOD INDIVIDUAL POLES.
PARTIAL FRACTION EXPANSIONS
• HEAVISIDE METHOD INDIVIDUAL POLES.
PARTIAL FRACTION EXPANSIONS
• HEAVISIDE METHOD REPEATED POLES.
PARTIAL FRACTION EXPANSIONS
•
GENERAL FORMAT FOR THE EXAMPLE FROM TABLE 4.1.
a3 a1 a1t a3 a2 b2t
s a3
L
e
e
a1 a2
(s a1 )(s a2 ) a2 a1
1
•
EXAMPLE VALUES
s 0.4
y (t ) L
a1 0 a2 0.8 a3 0.4
s(s 0.8)
1
•
SUBSTITUTE AND SIMPLIFY
0.4 0 0t 0.4 0.8 0.8t
s 0.4
0.8t
L
e
e
0
.
5
0
.
5
e
0.8 0
(
s
0
)(
s
0
.
8
)
0 0.8
1
PARTIAL FRACTION EXPANSIONS
•
SECOND EXAMPLE
•
CALCULATE COEFFICIENTS
s5
s5
1
2
Y (s ) 2
s 5s 4 (s 1)(s 4) s 1 s 4
s 5
4
s 5
1
1
2
s 4 s 1 3
s 1 s 4
3
•
INVERSE LaPLACE TRANSFORM
4 / 3 1 / 3 4 t 1 4 t
y(t ) L [Y ( s)] L
e e
3
s 1 s 4 3
1
1
PARTIAL FRACTION EXPANSIONS
•
REPEATED FACTOR EXAMPLE
•
CALCULATE COEFFICIENTS USING HEAVISIDE METHOD
3
s 1
1
2
Y (s )
2
2
s (s 2 )
s 2 (s 2 )
s
s 1
1
s 1
2
3
s s 2 2
(s 2 ) 2
•
s 0
1
1
1
4
4
SUBSTITUTE AND DETERMINE INVERSE LaPLACE TRANSFORM
1/ 4
1/ 2
1/ 4
Y (s )
2
s 2 (s 2 )
s
1 2t 1 2t 1
y (t ) L [Y (s )] e te S(t )
4
2
4
1
QUADRATIC FACTOR
1
Y (s ) 2 2
s (s as b )
1
2
2
a
a
4
b
a
a
4
b
s
s s
2
2
• EVALUATION OF ROOTS DEPENDS ON THE
VALUES OF a2 – 4b
QUADRATIC FACTOR EXAMPLE
3s 4
s 1
1 2
Y (s ) 2 2
2 2
s (s 4s 5) s s
s 4s 5
𝑎 = 4 𝑏 = 5 𝑎2 − 4𝑏 = −4
• EQUATING AROUND LIKE POWERS OF s:
s 1 1s(s 2 4s 5) 2 (s 2 4s 5) ( 3s 4 )s 2
(1 3 )s 3 ( 41 2 4 )s 2 (51 4 2 1)s (5 2 1) 0
• SOLVING FOR EACH TERM:
1
1
∝2 = = 0.2 , 5 ∝1 +4 ∝2 = 1 , ∝1 =
= 0.4,
5
25
∝3 = −∝1 =
1
−
25
= −0.4 ∝4 = −4 ∝1 −∝2 =
9
25
= 0.36
QUADRATIC FACTOR EXAMPLE
• SUBSTITUTING VALUES INTO EQUATION:
Y (s )
3s 4
s 1
1 2
0.04 0.2 0.04s 0.36
2
2
2
2
2
s (s 4s 5) s s
s 4s 5
s
s
s 2 4s 5
• IN TERMS SIMILAR TO TABLE 4.1
0.04s 0.36 0.04(s 2)
0.28
s 2 4s 5
(s 2 ) 2 1 (s 2 ) 2 1
• INVERSE LaPLACE SUBSTITUTION:
y (t ) L1 [Y (s )] 0.04S(t ) 0.2t 0.04e 2t cos t 0.28e 2t sin t
LaPLACE TRANSFORMS
• LINEARITY PROPERTIES INCLUDE ADDITIVITY, SO
L(af(t)+𝑏𝑔(𝑡)) = 𝑎𝐿(𝑓 𝑡 + 𝑔(𝑡)) = 𝑒 −𝑠𝑡 (𝑎𝑓 𝑡 + 𝑏𝑔(𝑡))𝑑𝑡
• EXAMPLE USING THE HYPERBOLIC COSINE
FUNCTION: cosh 𝑎𝑡 =
(𝑒 𝑎𝑡 +𝑒 −𝑎𝑡 )
2
= 𝑓(𝑡)
• TRANSFORMING:
• 𝐿(cosh 𝑎𝑡) =
1
2
𝐿 𝑒
𝑎𝑡
+
1
𝐿
2
• WHEN s > a: 𝐿(cosh 𝑎𝑡) =
𝑒
−𝑎𝑡
=
𝑠
( 2 2)
𝑠 −𝑎
1 1
(
2 𝑠−𝑎
+
1
)
𝑠+𝑎
LaPLACE TRANSFORMS
• PARTIAL FRACTION EXPANSION OBJECTIVE
• THIS METHOD IS USED TO ALGEBRAICALLY
CONVERT THE LaPLACE TRANSFORM INTO
TERMS THAT ARE IN THE TABLE
• EXAMPLE INVERT THE LaPLACE TRANSFORM:
𝑠+1
−1
𝐿 ( 3
)
2
𝑠 + 𝑠 − 6𝑠
• EXPAND INTO A TERM FOR EACH FACTOR IN
THE DENOMINATOR
PARTIAL FRACTION EXAMPLE
• THE RESULTING EQUATION HAS THE FORM:
𝑠+1
𝑠+1
𝑐1
𝑐2
𝑐3
=
= +
+
3
2
𝑠 + 𝑠 − 6𝑠
𝑠(𝑠 − 2)(𝑠 + 3) 𝑠 𝑠 − 2 𝑠 + 3
• CLEARING FRACTIONS YIELDS
𝑠 + 1 = 𝑐1 𝑠 − 2 𝑠 + 3 + 𝑐2 𝑠 𝑠 + 3 + 𝑐3 𝑠(𝑠 − 2)
• EQUATE THE COEFFICIENTS WITH LIKE
POWERS OF s: s 2 : (𝑐1 + 𝑐2 + 𝑐3 ) = 0;
s: 𝑐1 + 3𝑐2 − 2𝑐3 = 1; −6𝑐1 = 1
RESULTING VALUES:
𝑐1 =
1
−
6
𝑐2 =
3
10
𝑐3 =
2
−
15
LaPLACE TRANSFORMS
• SUBSTITUTION BACK INTO THE ORIGINAL
EQUATION
• 𝐿−1
𝑆+1
𝑆 3 +𝑆 2 −6𝑆
1
6
= − 𝐿−1
1
𝑆
+
3 −1
1
𝐿
10
𝑆−2
−
2 −1 1
𝐿 ( )
15
𝑆+3
• USING TABLE 4.1, THE SUBSTITUTIONS YIELD:
−1
• 𝐿
𝑆+1
𝑆 3 +𝑆 2 −6𝑆
=
1
−
6
3 2𝑡
+ 𝑒
10
−
2 −3𝑡
𝑒
15
EXAMPLE OF ODE SOLUTION
• ODE WITH INITIAL
CONDITIONS
• APPLY LAPLACE
TRANSFORM TO EACH
TERM
• SOLVE FOR Y(S)
• APPLY PARTIAL
FRACTION EXPANSIONS
WITH HEAVISIDE
• APPLY INVERSE LaPLACE
TRANSFORM TO EACH
TERM
MIX TANK TRANSIENT RESPONSE
• STEP INPUT INTO MIX TANK
• V = 4 m3 q = 2 m3/min
• STEP CONCENTRATION IS
5%
• COMPONENT BALANCE
dc1
dc1
V
q(ci c1 ) 4
2c1 2ci
dt
dt
• STEP INPUT LaPLACIAN
0 t 0
5
ci (t )
Ci (s )
s
5 t 0
c1 (0) 0
MIX TANK TRANSIENT RESPONSE
• LaPLACE TRANSFORM FOR COMPOSITION
2
4[ sC1 ( s) 0] 2C1 ( s) 2Ci ( s) C1 ( s)
Ci ( s)
4s 2
• ADD INPUT SUBSTITUTION
2 5
5
C1 ( s)
4s 2 s s(2s 1)
• INVERSE LaPLACE TRANSFORM
5
t / 2
c1(t ) L
5
1
e
s(2s 1)
1