Transcript thesis

Sukhum Sattaratnamai
Advisor: Dr.Nattee Niparnan
1
Outline
 Introduction
 Objective
 Calibration Process
 Our Work
 Improving Laser Data
 Automate Data Collection
 Conclusion
2
LRF-Camera System
p
α
p(u, v)
d
3
LRF-Camera System
pm  AR | t P
[R | t]
p
α
d
 XL 
u 
 YL 
 v   AR | t  
 
 ZL 
1 
 
1
4
LRF-Camera Calibration
 Problem Definition
 Find the transformation [R |t ] of the camera w.r.t. LRF
5
Objective
Related Work
Proposal
 LRF-Camera Calibration  Improving Laser Data
Calibration of a multi-sensor system
laser rangefinder/camera, 1995
 More Accurate Result
Extrinsic calibration of a camera and
laser range finder (improves camera
calibration), 2004
 Filtering Laser Data
 Easier Process
An algorithm for extrinsic parameters
calibration of a camera and a laser range
finder using line features, 2007
6
Objective
Related Work
Proposal
Thesis
 LRF-Camera Calibration  Improving Laser Data  Improving Laser Data
Calibration of a multi-sensor system
laser rangefinder/camera, 1995
On Improving Laser
Data for Extrinsic LRF/Camera
Calibration, 2011
 More Accurate Result
Extrinsic calibration of a camera and
laser range finder (improves camera
calibration), 2004
 Easier Process
 Filtering Laser Data
 Automated Process
Automated Calibration
Data Collection in LRF/Camera
Calibration with Online
Feedback, 2012
An algorithm for extrinsic parameters
calibration of a camera and a laser range
finder using line features, 2007
7
Objective
Related Work
Proposal
Thesis
 LRF-Camera Calibration  Improving Laser Data  Improving Laser Data
Calibration of a multi-sensor system
laser rangefinder/camera, 1995
On Improving Laser
Data for Extrinsic LRF/Camera
Calibration, 2011
 More Accurate Result
Extrinsic calibration of a camera and
laser range finder (improves camera
calibration), 2004
 Easier Process
 Filtering Laser Data
 Automated Process
Automated Calibration
Data Collection in LRF/Camera
Calibration with Online
Feedback, 2012
An algorithm for extrinsic parameters
calibration of a camera and a laser range
finder using line features, 2007
8
Calibration Process
Start
Data Collection
Feature Detection
Optimization
Check
Result
End
9
Calibration Process
 Data Collection
10
Calibration Process
 Feature Detection
11
Calibration Process
 Projection Error
E(M ext , pl )  P(M ext , pl )  pm
2
12
Calibration Process
 Optimization
 Simulated Annealing : Find global minimum
 Levenberg-Marquardt : Find local minimum
13
Calibration Process
 Result
 Project laser data onto an image
14
Our Work
 Improving Laser Data
 Automatic Data Collection
15
Improving Laser Data
 Angular Error
 [0,  ) =>  2
16
Simulation
 Angular Error

[  2 ,  2) =>  4
17
Simulation
 Laser Data Improvement
Target
Method
average RMS
S.D. of RMS
*
E(M ext
, pl )
imp plain ratio
0.32 0.54 54.8%
0.007 0.032 22.1%
imp
0.92
0.003
pm
plain
2.04
0.019
ratio
48.0%
16.5%
18
Experiment
 Laser Range Finder
 Camera
19
Experiment
 Laser Data Improvement
Target
Method
average RMS
S.D. of RMS
Stingray
imp plain ratio
1.66 2.90 57.3%
0.02 0.04 40.7%
imp
6.18
0.19
Legria
plain ratio
11.38 54.3%
0.48 38.8%
20
Experiment
 Number of Data
21
Improving Laser Data
 Lower bound
u  f x  ( X c / Z c )  cx
v  f y  (Yc / Z c )  c y
e0  f   4
22
Simulation
 Lower Bound
การทดลอง
1
2
3
4
fx

e0
270
540
270
540
0.5
0.5
1.0
1.0
0.59
1.18
1.18
2.36
RMS
0.55
1.09
1.09
2.18
Ratio
92.9
92.9
92.3
92.3
23
Automate Data Collection
Start
Feature Detection
5 นาที
2 นาที
30 นาที
Optimization
1 วินาที
Data Collection
Check
Result
End
24
Automate Data Collection
 Feature Detection
25
Automate Data Collection
 False Detection => Tracking
26
Experiment
 Data Distribution
บริ เวณ
ซ้าย
กลาง
ขวา
ทั้งหมด
ปรับแก้
ค่าเฉลี่ย
ค่าเบี่ยงเบน
0.44
0.002
0.39
0.003
0.50
0.003
0.44
0.005
ทดสอบ
ค่าเฉลี่ย
ค่าเบี่ยงเบน
1.03
0.063
0.78
0.037
1.16
0.078
0.69
0.011
27
Automate Data Collection
 Working Space Covering
 Data Bin (x, y, angle)
28
Automate Data Collection
 Moving Calibration Object => Velocity Metric
29
Experiment
 Velocity & Accuracy
30
Experiment
 Accuracy & Time
31
Experiment
32
Automate Data Collection
 User Interface
 Data Quality Metric

Tracking, Velocity
 Data Distribution

Data Bins, Current Bin, Target Bin
33
Automate Data Collection
 User Interface
 Result

Laser Data Projection
 Acknowledge & Warning Sound
 Data Acquire, Tracking Lost
34
Conclusion
 Improved calibration method
 Reduce projection error to 50 percent
 Automatic data collection process
 Faster and easier for all user
35
36