Transcript thesis
Sukhum Sattaratnamai
Advisor: Dr.Nattee Niparnan
1
Outline
Introduction
Objective
Calibration Process
Our Work
Improving Laser Data
Automate Data Collection
Conclusion
2
LRF-Camera System
p
α
p(u, v)
d
3
LRF-Camera System
pm AR | t P
[R | t]
p
α
d
XL
u
YL
v AR | t
ZL
1
1
4
LRF-Camera Calibration
Problem Definition
Find the transformation [R |t ] of the camera w.r.t. LRF
5
Objective
Related Work
Proposal
LRF-Camera Calibration Improving Laser Data
Calibration of a multi-sensor system
laser rangefinder/camera, 1995
More Accurate Result
Extrinsic calibration of a camera and
laser range finder (improves camera
calibration), 2004
Filtering Laser Data
Easier Process
An algorithm for extrinsic parameters
calibration of a camera and a laser range
finder using line features, 2007
6
Objective
Related Work
Proposal
Thesis
LRF-Camera Calibration Improving Laser Data Improving Laser Data
Calibration of a multi-sensor system
laser rangefinder/camera, 1995
On Improving Laser
Data for Extrinsic LRF/Camera
Calibration, 2011
More Accurate Result
Extrinsic calibration of a camera and
laser range finder (improves camera
calibration), 2004
Easier Process
Filtering Laser Data
Automated Process
Automated Calibration
Data Collection in LRF/Camera
Calibration with Online
Feedback, 2012
An algorithm for extrinsic parameters
calibration of a camera and a laser range
finder using line features, 2007
7
Objective
Related Work
Proposal
Thesis
LRF-Camera Calibration Improving Laser Data Improving Laser Data
Calibration of a multi-sensor system
laser rangefinder/camera, 1995
On Improving Laser
Data for Extrinsic LRF/Camera
Calibration, 2011
More Accurate Result
Extrinsic calibration of a camera and
laser range finder (improves camera
calibration), 2004
Easier Process
Filtering Laser Data
Automated Process
Automated Calibration
Data Collection in LRF/Camera
Calibration with Online
Feedback, 2012
An algorithm for extrinsic parameters
calibration of a camera and a laser range
finder using line features, 2007
8
Calibration Process
Start
Data Collection
Feature Detection
Optimization
Check
Result
End
9
Calibration Process
Data Collection
10
Calibration Process
Feature Detection
11
Calibration Process
Projection Error
E(M ext , pl ) P(M ext , pl ) pm
2
12
Calibration Process
Optimization
Simulated Annealing : Find global minimum
Levenberg-Marquardt : Find local minimum
13
Calibration Process
Result
Project laser data onto an image
14
Our Work
Improving Laser Data
Automatic Data Collection
15
Improving Laser Data
Angular Error
[0, ) => 2
16
Simulation
Angular Error
[ 2 , 2) => 4
17
Simulation
Laser Data Improvement
Target
Method
average RMS
S.D. of RMS
*
E(M ext
, pl )
imp plain ratio
0.32 0.54 54.8%
0.007 0.032 22.1%
imp
0.92
0.003
pm
plain
2.04
0.019
ratio
48.0%
16.5%
18
Experiment
Laser Range Finder
Camera
19
Experiment
Laser Data Improvement
Target
Method
average RMS
S.D. of RMS
Stingray
imp plain ratio
1.66 2.90 57.3%
0.02 0.04 40.7%
imp
6.18
0.19
Legria
plain ratio
11.38 54.3%
0.48 38.8%
20
Experiment
Number of Data
21
Improving Laser Data
Lower bound
u f x ( X c / Z c ) cx
v f y (Yc / Z c ) c y
e0 f 4
22
Simulation
Lower Bound
การทดลอง
1
2
3
4
fx
e0
270
540
270
540
0.5
0.5
1.0
1.0
0.59
1.18
1.18
2.36
RMS
0.55
1.09
1.09
2.18
Ratio
92.9
92.9
92.3
92.3
23
Automate Data Collection
Start
Feature Detection
5 นาที
2 นาที
30 นาที
Optimization
1 วินาที
Data Collection
Check
Result
End
24
Automate Data Collection
Feature Detection
25
Automate Data Collection
False Detection => Tracking
26
Experiment
Data Distribution
บริ เวณ
ซ้าย
กลาง
ขวา
ทั้งหมด
ปรับแก้
ค่าเฉลี่ย
ค่าเบี่ยงเบน
0.44
0.002
0.39
0.003
0.50
0.003
0.44
0.005
ทดสอบ
ค่าเฉลี่ย
ค่าเบี่ยงเบน
1.03
0.063
0.78
0.037
1.16
0.078
0.69
0.011
27
Automate Data Collection
Working Space Covering
Data Bin (x, y, angle)
28
Automate Data Collection
Moving Calibration Object => Velocity Metric
29
Experiment
Velocity & Accuracy
30
Experiment
Accuracy & Time
31
Experiment
32
Automate Data Collection
User Interface
Data Quality Metric
Tracking, Velocity
Data Distribution
Data Bins, Current Bin, Target Bin
33
Automate Data Collection
User Interface
Result
Laser Data Projection
Acknowledge & Warning Sound
Data Acquire, Tracking Lost
34
Conclusion
Improved calibration method
Reduce projection error to 50 percent
Automatic data collection process
Faster and easier for all user
35
36