Superinductor with Tunable Non

Download Report

Transcript Superinductor with Tunable Non

Superinductor with Tunable Non-Linearity
M.E. Gershenson
M.T. Bell, I.A. Sadovskyy, L.B. Ioffe, and A.Yu. Kitaev*
Department of Physics and Astronomy, Rutgers University, Piscataway NJ
*
Caltech, Institute for Quantum Information, Pasadena CA
Outline:
Superinductor: why do we need it?
Our Implementation of the superinductor
Microwave Spectroscopy and Rabi oscillations
Potential Applications
- A new fully tunable platform for the study of quantum phase
transitions?
Why Superinductors?
Superinductor:
dissipationless inductor
โ„Ž
Z >> ๐‘…Q โ‰ก
2 โ‰ˆ 6.5๐‘˜ฮฉ
2๐‘’
No extra dephasing
Potential applications:
- reduction of the sensitivity of Josephson qubits to the charge noise,
- Implementation of fault tolerant computation based on pairs of Cooper pairs
and pairs of flux quanta (Kitaev, Ioffe),
- ac isolation of the Josephson junctions in the electrical current standards based
on Bloch oscillations.
Impedance controls the scale of
zero-point motion in quantum
circuits:
Conventional โ€œGeometricโ€ Inductors
Geometrical inductance of a wire: ~ 1 pH/๏ญm.
Hence, it is difficult to make a large (1 ๏ญH ๏‚ฎ 6 k๏—
@ 1 GHz) L in a planar geometry.
Moreover, a wire loop possesses not only geometrical
inductance, but also a parasitic capacitance, and its microwave
impedance is limited:
๐‘ = ๐œ”๐ฟ โ‰ˆ
๐œ‡0
= 8๐›ผ × ๐‘…๐‘„ ~0.4๐‘˜ฮฉ
๐œ€0
the fine structure constant
๏ก ๏€ฝ
1 e
2
2 ๏ฅ 0 hc
๏‚ป
1
137
Tunable Nonlinear Superinductor
๐‘ฌ๐‘ฑ๐‘ณ
๐’“โ‰ก
๐‘ฌ๐‘ฑ๐‘บ
Unit cell of the tested devices:
asymmetric dc SQUID threaded by
the flux ๏†.
ฮฆ
ฮ”๐œ™ = 2๐œ‹
ฮฆ0
โ„Ž
ฮฆ0 โ‰ก
โ‰ˆ 20๐บ โˆ™ ๐œ‡๐‘š2
2๐‘’
Josephson energy of a two cell device (classical approx., ๐ธ๐ฝ๐‘† โ‰ช ๐ธ๐ฝ๐‘† )
๐ธ๐ฝ = โˆ’5 × ๐ธ๐ฝ2 ๐‘๐‘œ๐‘ 
๐œ‘
5
โˆ’1
๐œ‘
ฮฆ
๐œ‘
โˆ’ ๐ธ๐ฝ1 ๐‘๐‘œ๐‘  2๐œ‹ ฮฆ โˆ’ 3 5 โˆ’ ๐ธ๐ฝ1 ๐‘๐‘œ๐‘  2๐œ‹ ฮฆ + 3 5 .
For the optimal EJL/EJS, the energy becomes
โ€œflatโ€ at ๏†=1/2๏†0.
๐‘‘2 ๐ธ๐ฝ ๐œ‘
๐ฟ๐พ ๏‚ต
๐‘‘๐œ‘ 2
ฮฆ
- diverges, the
phase fluctuations
are maximized.
0
0
๐’“ = ๐Ÿ’. ๐Ÿ–
๐šฝ=๐ŸŽ
๐’“ = ๐Ÿ’. ๐Ÿ–
๐šฝ๐ŸŽ
๐šฝ=
๐Ÿ
๐’“ < ๐Ÿ’. ๐Ÿ–
๐šฝ๐ŸŽ
๐šฝ=
๐Ÿ
Kinetic Inductance
This limitation does not apply to superconductors whose kinetic inductance
๐ฟ๐พ is associated with the inertia of the Cooper pair condensate.
Nanoscale superconducting wires:
โ„Ž โˆ†
ฮฆ0
๐ธ๐ฝ = 2
=
8๐‘’ ๐‘…๐‘
2๐œ‹
2
1
๐ฟ๐พ
ฮฆ0
๐ฟ๐พ =
2๐œ‹
2
1 โ„๐‘…๐‘ ๐‘ž
=
๐ธ๐ฝ
๐œ‹โˆ†
NbN films, d=5nm, R๏ฏ~0.9 k๏—, L๏ฏ~1 nH
Annunziata et al., Nanotechnology 21, 445202 (2010).
InOx films, d=35nm, R๏ฏ~3 k๏—, L๏ฏ~4 nH
Astafiev et al., Nature 484, 355 (2012).
Long chains of ultra-small
Josephson junctions:
(up to 0.3 ๏ญH)
Manucharyan et at., Science 326, 113 (2009).
Tunable Nonlinear Superinductor (contโ€™d)
two-well
potential
I cell
2 cells
4 cells
6 cells
Optimal
๐‘ฌ๐‘ฑ๐‘ณ
๐’“๐จ โ‰ก
๐‘ฌ๐‘ฑ๐‘บ
depends on the ladder length.
๐’๐’‘๐’•
Inductance Measurements
LC- resonator
LK
inductor
resonator
3-14 GHz
1-11 GHz
CK
L
LC
C
Two coupled (via LC) resonators:
- decoupling
feedline
from
the
MW
- two-tone measurements with
the LC resonance frequency
within the 3-10 GHz setup
bandwidth.
๐œ”๐ฟ๐ถ
โ‰ˆ 6 โˆ’ 7 ๐บ๐ป๐‘ง
2๐œ‹
๐œ”๐พ
โ‰ˆ 1 โˆ’ 20 ๐บ๐ป๐‘ง
2๐œ‹
On-chip Circuitry
โ€œManhattan patternโ€
nanolithography
Multi-angle deposition
of Al
Dev1
Dev2
Multiplexing:
several devices
with systematically
varied parameters.
Dev3
Dev4
Devices with 6 unit cells
Hamiltonian
diagonalization
๐‘Ÿ
๐‘Ÿo
Device
๐ธ๐ฝ๐‘† ,
K
๐ธ๐ถ๐‘† ,
K
๐ธ๐ฝ๐ฟ ,
K
๐ธ๐ถ๐ฟ ,
K
1
3.5
0.46
15
0.15
2
3.5
0.46
14.3
0.15
๐‘Ÿo ๐‘ = 6 =
๐ธ๐ฝ๐ฟ
๐ธ๐ฝ๐‘†
๐ธ๐ฝ๐ฟ
๐ธ๐ฝ๐‘†
๐ฟ๐พ ฮฆ = 0 ,
๐ฟ๐พ ฮฆ = ฮฆ0 /2 ,
nH
nH
4.3
4.5
3.7
150
4.1
4.3
3.8
310
๐‘Ÿโ‰ก
โ‰ˆ 4.1 - for the ladders with six unit cells
opt
Rabi Oscillations
a non-linear quantum system in the presence of an resonance driving field.
1
The non-linear
superinductor shunted by
a capacitor represents
a Qubit.
Damping of Rabi
oscillations is due to the
decay (coupling to the LC
resonator and the feedline).
Mechanisms of Decoherence
Decoherence due to the flux noise:
Because the curvature
๐‘‘2 ๐ธJ ๐œ‘
๐‘‘๐œ‘2
(which controls the position of energy levels)
has a minimum at full frustration, one expects that the flux noise does not
affect the qubit in the linear order.
Decoherence due to Aharonov-Casher effect:
fluctuations of offset charges on the islands + phase slips. The phase slip
rate
exp โˆ’๐‘
๐ธJL
๐ธCL
๐‘ โ‰… 2.5 โˆ’ 2.8
is negligible (for the junctions in the ladder backbone
๐ธJL
โ‰… 100
๐ธCL
).
Ladders with 24 unit cells
๐‘Ÿ โ‰ˆ 5.2 ๐‘Ÿo ๐‘ = 24 โ‰ˆ 4.5
~ 100๏ญm
two-well
potential
almost linear inductor
๐ฟ๐พ ๐›ท = ๐›ท0 /2 = 3๐œ‡๐ป
Ladders with 24 unit cells (contโ€™d)
๐‘Ÿ โ‰ˆ 4.6 ๐‘Ÿo ๐‘ = 24 =
Number of
unit cells
๐ธJS , K
24
3.15
๐ธCS , K
๐ธ๐ฝ๐ฟ
๐ธ๐ฝ๐‘†
๐ธJL ,
โ‰ˆ 4.5
opt
๐ธCL , K
K
0.46
14.5
0.15
๐‘ต = ๐Ÿ๐Ÿ’
๐‘Ÿโ‰ก
๐ธJL
๐ธJS
4.6
๐ถ๐พ ,
๐ฟ๐ถ ,
๐ฟK ฮฆ = 0 ,
๐ฟK ฮฆ = ฮฆ0 /2 ,
fF
nH
nH
nH
5
0.8
16
3 000
Ladders with 24 unit cells (contโ€™d)
quasi-classical
modeling
๐‘ณ๐‘ฒ ๐œฑ = ๐œฑ๐ŸŽ /๐Ÿ = ๐Ÿ‘๐๐‘ฏ
- this is the inductance of a 3meter-long wire!
๐‘ 3๐บ๐ป๐‘ง = 50๐‘˜ฮฉ > ๐‘…๐‘„ โ‰ก
โ„Ž
2๐‘’
2
ฮฆ0
ฮฆ=
2
crit. point
Double-well potential
๐‘Ÿ โ‰ˆ 4.2 ๐‘Ÿo ๐‘ = 24 โ‰ˆ 4.5
A new fully tunable platform for the
study of quantum phase transitions?
Summary
Our Implementation of the superinductor
๐‘ณ๐‘ฒ ๐ฎ๐ฉ ๐ญ๐จ ๐Ÿ‘๐๐‘ฏ
Microwave Spectroscopy and Rabi oscillations
- Rabi time up to 1.4 ๏ญs, limited by the decay
Potential Applications
- Quantum Computing
- Current standards
- Quantum transitions in 1D