Section 6.4 – Logarithmic Functions

Download Report

Transcript Section 6.4 – Logarithmic Functions

Section 6.3 โ€“ Exponential Functions
Laws of Exponents
If s, t, a, and b are real numbers where a > 0 and b > 0, then:
๐‘Ž ๐‘  โˆ™ ๐‘Ž๐‘ก = ๐‘Ž ๐‘ +๐‘ก
๐‘ก
1 =1
(๐‘Ž ๐‘  )๐‘ก = ๐‘Ž ๐‘ ๐‘ก
(๐‘Ž๐‘)๐‘ก = ๐‘Ž๐‘ก ๐‘ ๐‘ก
0
๐‘Ž =1
๐‘Žโˆ’๐‘ก
1
1
= ๐‘ก=
๐‘Ž
๐‘Ž
Definition:
An Exponential Function is in the form, ๐‘“ ๐‘ฅ = ๐ถ๐‘Ž ๐‘ฅ
โ€œaโ€ is a positive real number and does not equal 1
โ€œaโ€ is the base and is the Growth Factor
โ€œCโ€ is a real number and does not equal 0
โ€œCโ€ is the Initial Value because ๐‘“ 0 = ๐ถ๐‘Ž0 = ๐ถ
The domain of f(x) is the set of all real numbers
๐‘“(๐‘ฅ + 1)
๐ถ๐‘Ž ๐‘ฅ+1 ๐ถ๐‘Ž ๐‘ฅ ๐‘Ž1
=๐‘Ž
โ†’
=
=๐‘Ž
๐‘ฅ
๐‘ฅ
๐‘“(๐‘ฅ)
๐ถ๐‘Ž
๐ถ๐‘Ž
๐‘ก
Section 6.3 โ€“ Exponential Functions
Examples
๐‘ฅ
๐‘“(๐‘ฅ)
๐‘“(๐‘ฅ + 1)
=๐‘Ž
๐‘“(๐‘ฅ)
โˆ’1
2
3
1
3
=
2/3 2
0
1
3/2 3
=
1
2
1
3
2
9/4 3
=
3/2 2
2
9
4
27/8 3
=
9/4
2
3
27
8
๐‘Ž=
๐‘“ ๐‘ฅ = ๐ถ๐‘Ž ๐‘ฅ
๐‘“ 0 = 1, ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐ถ = 1
3
๐‘“ ๐‘ฅ =1
2
๐‘ฅ
3
2
3
=
2
๐‘ฅ
Section 6.3 โ€“ Exponential Functions
Examples
๐‘ฅ
๐‘“(๐‘ฅ)
๐‘“(๐‘ฅ + 1)
=๐‘Ž
๐‘“(๐‘ฅ)
โˆ’1
1
2
1/4 1
=
1/2 2
0
1
4
1/8 1
=
1/4 2
1
1
8
1/16 1
=
1/8
2
2
1
16
1/32 1
=
1/16 2
3
1
32
๐‘Ž=
๐‘“ 0 = 1/4, ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘’๐‘“๐‘œ๐‘Ÿ๐‘’ ๐ถ = 1/4
1 3
๐‘“ ๐‘ฅ =
4 2
๐‘ฅ
1
2
๐‘“ ๐‘ฅ = ๐ถ๐‘Ž ๐‘ฅ
Section 6.3 โ€“ Exponential Functions
Properties of the Exponential Function,๐‘“ ๐‘ฅ = ๐‘Ž ๐‘ฅ , ๐‘Ž > 1
The domain is the set of all real numbers.
The range is the set of all positive real numbers.
The y-intercept is 1; x-intercepts do not exist.
The x-axis (y = 0) is a horizontal asymptote, as x๏‚ฎ๏€ญ๏‚ฅ.
If a > 1, the f(x) is increasing function.
The graph contains the points (0, 1), (1, a), and (-1, 1/a).
The graph is smooth and continuous.
Section 6.3 โ€“ Exponential Functions
๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ , ๐‘Ž > 1
The graph of the exponential function is shown below.
๐‘ฆ = ๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ
a
Section 6.3 โ€“ Exponential Functions
Properties of the Exponential Function, ๐‘“ ๐‘ฅ = ๐‘Ž ๐‘ฅ , 0 < ๐‘Ž < 1
The domain is the set of all real numbers.
The range is the set of all positive real numbers.
The y-intercept is 1; x-intercepts do not exist.
The x-axis (y = 0) is a horizontal asymptote, as x๏‚ฎ๏‚ฅ.
If 0 < a < 1, then f(x) is a decreasing function.
The graph contains the points (0, 1), (1, a), and (-1, 1/a).
The graph is smooth and continuous.
Section 6.3 โ€“ Exponential Functions
๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ , 0 < ๐‘Ž < 1
The graph of the exponential function is shown below.
๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ , 0 < ๐‘Ž < 1
Section 6.3 โ€“ Exponential Functions
Eulerโ€™s Constant โ€“ e
The value of the following expression approaches e,
1
1+
๐‘›
๐‘›
as n approaches ๏‚ฅ.
Using calculus notation,
1
๐‘’ = lim 1 +
๐‘›โ†’โˆž
๐‘›
๐‘›
Applications of e
Growth and decay
Compound interest
Differential and Integral calculus with exponential functions
Infinite series
Section 6.3 โ€“ Exponential Functions
Theorem
If ๐‘Ž๐‘ข = ๐‘Ž๐‘ฃ , then ๐‘ข = ๐‘ฃ.
Solving Exponential Equations
1) 32๐‘ฅโˆ’1 = 3๐‘ฅ
2๐‘ฅ โˆ’ 1 = ๐‘ฅ
x=1
2) 22๐‘ฅ = 32
22๐‘ฅ = 4 โˆ™ 8
3) 4๐‘ฅ+2 = 8
22
๐‘ฅ+2
= 23
22๐‘ฅ = 22 โˆ™ 23
22(๐‘ฅ+2) = 23
22๐‘ฅ = 25
2๐‘ฅ = 5
5
๐‘ฅ=
2
22๐‘ฅ+4 = 23
2๐‘ฅ + 4 = 3
1
๐‘ฅ=โˆ’
2
Section 6.3 โ€“ Exponential Functions
Solving Exponential Equations
4)
1 ๐‘ฅ+2
3
3โˆ’1
93๐‘ฅ
=
๐‘ฅ+2
= 32
3โˆ’๐‘ฅโˆ’2 = 36๐‘ฅ
โˆ’๐‘ฅ โˆ’ 2 = 6๐‘ฅ
๐‘ฅ=โˆ’
2
7
3๐‘ฅ
5) 81 โˆ™ 9โˆ’2๐‘โˆ’2 = 27
9 โˆ™ 9 โˆ™ 9โˆ’2๐‘โˆ’2 = 27
32 โˆ™ 32 32 โˆ’2๐‘โˆ’2 = 33
34 โˆ™ 3โˆ’4๐‘ฅโˆ’4 = 33
3โˆ’4๐‘ฅ = 33
โˆ’4๐‘ฅ = 3
3
๐‘ฅ=โˆ’
4
Section 6.4 โ€“ Logarithmic Functions
The exponential and logarithmic functions are inverses of each other.
The logarithmic function is defined by
๐‘ฆ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ
๐‘–๐‘“ ๐‘Ž๐‘›๐‘‘ ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘–๐‘“
๐‘ฅ = ๐‘Ž๐‘ฆ
The domain is the set of all positive real numbers 0, โˆž .
The range is the set of all real numbers โˆ’โˆž, โˆž .
The x-intercept is 1 and the y-intercept does not exist.
The y-axis (x = 0) is a vertical asymptote.
If 0 < a < 1, then the logarithmic function is a decreasing function.
If a > 1, then the logarithmic function is an increasing function.
The graph contains the points (1, 0), (a, 1), and (1/a, โ€“1).
The graph is smooth and continuous.
Section 6.4 โ€“ Logarithmic Functions
The graph of the logarithmic function is shown below.
๐‘Ž, 1
๐‘ฆ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ
๐‘Ž
The natural logarithmic function
๐‘ฆ = ๐‘™๐‘œ๐‘”๐‘’ ๐‘ฅ = ln ๐‘ฅ
๐‘–๐‘“ ๐‘Ž๐‘›๐‘‘ ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘–๐‘“
๐‘ฅ = ๐‘’๐‘ฆ
๐‘–๐‘“ ๐‘Ž๐‘›๐‘‘ ๐‘œ๐‘›๐‘™๐‘ฆ ๐‘–๐‘“
๐‘ฅ = 10๐‘ฆ
The common logarithmic function
๐‘ฆ = ๐‘™๐‘œ๐‘”10 ๐‘ฅ = ๐‘™๐‘œ๐‘” ๐‘ฅ
Section 6.4 โ€“ Logarithmic Functions
Graphs of ๐‘“ ๐‘ฅ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘“ ๐‘ฅ = ๐‘Ž ๐‘ฅ
๐‘Ž, 1
๐‘ฆ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ
๐‘Ž
๐‘ฆ = ๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ
a
Section 6.4 โ€“ Logarithmic Functions
Graphs of ๐‘“ ๐‘ฅ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘“ ๐‘ฅ = ๐‘Ž ๐‘ฅ
Inverse Functions: ๐‘“ ๐‘ฅ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘“ ๐‘ฅ = ๐‘Ž ๐‘ฅ
๐‘ฆ = ๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ
a
๐‘Ž, 1
๐‘Ž
๐‘ฆ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ
Section 6.4 โ€“ Logarithmic Functions
Graphs of ๐‘“ ๐‘ฅ = ๐‘’ ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘“ ๐‘ฅ = ln ๐‘ฅ
Inverse Functions: ๐‘“ ๐‘ฅ = ๐‘’ ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ๐‘“ ๐‘ฅ = ln ๐‘ฅ
Section 6.4 โ€“ Logarithmic Functions
Graph ๐‘“ ๐‘ฅ = ๐‘Ž ๐‘ฅ + 2
๐‘ฆ = ๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ
a
๐‘Ž, 1
๐‘Ž
๐‘ฆ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ
Section 6.4 โ€“ Logarithmic Functions
Graph ๐‘“ ๐‘ฅ = ๐‘Ž ๐‘ฅ+1 + 2
๐‘ฆ = ๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ
a
๐‘Ž, 1
๐‘Ž
๐‘ฆ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ
Section 6.4 โ€“ Logarithmic Functions
Graph ๐‘“ ๐‘ฅ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ โˆ’ 1
๐‘ฆ = ๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ
a
๐‘Ž, 1
๏‚ท
๐‘Ž
๐‘ฆ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ
Section 6.4 โ€“ Logarithmic Functions
Graph ๐‘“ ๐‘ฅ = ๐‘™๐‘œ๐‘”๐‘Ž (๐‘ฅ โˆ’ 2) โˆ’ 1
๐‘ฆ = ๐‘“ ๐‘ฅ = ๐‘Ž๐‘ฅ
a
๐‘Ž, 1
๐‘Ž
๐‘ฆ = ๐‘™๐‘œ๐‘”๐‘Ž ๐‘ฅ
๏‚ท
Section 6.4 โ€“ Logarithmic Functions
Change the exponential statements to logarithmic statements
๐‘Ž5 = 6.7
8๐‘ฅ = 9.2
๐‘’3 = ๐‘
๐‘’๐‘ฅ = 4
5 = ๐‘™๐‘œ๐‘”๐‘Ž 6.7
๐‘ฅ = ๐‘™๐‘œ๐‘”8 6.7
3 = ln ๐‘
๐‘ฅ = ln 4
Change the logarithmic statements to exponential statements
๐‘™๐‘œ๐‘”3 5 = ๐‘ฅ
๐‘™๐‘œ๐‘”๐‘ฅ 7 = 4
ln ๐‘Ž = 6
5 = 3๐‘ฅ
7 = ๐‘ฅ4
๐‘Ž = ๐‘’6
Solve the following equations
๐‘™๐‘œ๐‘”3 (2๐‘ฅ) = 1
๐‘™๐‘œ๐‘”2 (5๐‘ฅ + 1) = 4
๐‘™๐‘œ๐‘”2 32 = โˆ’3๐‘ฅ + 9
2๐‘ฅ = 31
3
๐‘ฅ=
2
5๐‘ฅ + 1 = 24
32 = 2โˆ’3๐‘ฅ+9
5๐‘ฅ + 1 = 16
25 = 2โˆ’3๐‘ฅ+9
5๐‘ฅ = 15
๐‘ฅ=3
5 = โˆ’3๐‘ฅ + 9
โˆ’4 = โˆ’3๐‘ฅ
4
=๐‘ฅ
3
Section 6.4 โ€“ Logarithmic Functions
Solve the following equations
๐‘’ ๐‘ฅ = 10
๐‘’ 7๐‘ฅ = 15
8 + 2๐‘’ ๐‘ฅ = 12
๐‘ฅ = ln 10
7๐‘ฅ = ln 15
ln 15
๐‘ฅ=
7
2๐‘’ ๐‘ฅ = 4
๐‘’๐‘ฅ = 2
๐‘ฅ = ln 2