TEQ * Typical Exam Questions
Download
Report
Transcript TEQ * Typical Exam Questions
TEQ – Typical Exam
Questions
TEQ #1
Statement
J
P
K
1
3
O
4
M
2
1. JKLM is a parallelogram
1. Given
2. JO OL
2. Given
3. JPK MQL
3. Opposite sides of a
parallelogram are parallel
4. 1 2
4. Parallel lines cut by a
transversal form congruent
alternate interior angles
5. 3 4
5. Vertical angles are congruent
6. ΔJOP ΔLOQ
6. ASA ASA
7. OP OQ
7. CPCTC
L
Q
Given: JKLM is a parallelogram
JO OL
Prove:
OP OQ
Reason
E
C
B
Statement
L
J
D
A
K
Given: Parallelogram DEBK,
, BC DA
DJ BL
Prove: CJ AL
Reason
1. Parallelogram DEBK
1. Given
2. BC DA
2. Given
3. DJ BL
3. Given
4. JL JL
4. Reflexive postulate
5. DJ JL BL JL
5. Addition postulate
6. DJ JL DL
6. Partition postulate
BL JL JB
7. DL JB
7. Substitution postulate
8. EB DK
8. Opposite sides of a parallelogram
are parallel
9. 1 2
9. Parallel lines cut by a
transversal form congruent
alternate interior angles.
10. ΔCJB ΔALD
10. SAS SAS
11. CJ AL
11. CPCTC
TEQ #3
Statement
D
4
1
F
A
E
2
3
B
1. ABCD is a parallelogram
1. Given
2. DF AC
2. Given
C 3. EB AC
4. 1 and 2 are
right angles
Prove: DF BE
3. Given
4. Perpendicular segments form
right angles
5. 1 2
5. All right angles are congruent
6. DC AB and DC AB
6. Opposite sides of a
parallelogram are both parallel
and congruent
7. 3 4
7. Parallel lines cut by a
transversal form congruent
alternate interior angles
8. ΔDFC ΔBEA
8. AAS AAS
9. DF BE
9. CPCTC
Given: Parallelogram ABCD,
DF AC
Reason
TEQ #4
Statement
S
R
1
P
2
Q
Given : Parallelogram PQRS
PQ QR
Prove: 1 is not congruent
to2
Reason
1. Parallelogram PQRS
1. Given
2. PQ QR
2. Given
3. ∠1 ≅ ∠2
3. Assumption
4. PQRS is a rhombus
4. A parallelogram whose
diagonal bisects an angle is
a rhombus
5. 𝑃𝑄 ≅ 𝑄𝑅
5. All sides of a rhombus
are congruent
6. ∠1 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡
𝑡𝑜∠2
6. Contradiction 2,5
TEQ #5
Statement
1. Rhombus ABCD
Reason
1. Given
2. E is the midpoint of 𝐷𝐹 2. Given
4
1
3. DE EF
3. A midpoint divides a segment
into two congruent parts
4. 1 2
4. Vertical angles are congruent
5. DC ABF
5. Opposite sides of a rhombus
are parallel
6. 3 4
6. Parallel lines cut by a
transversal form congruent
alternate interior angles.
7. ΔDEC ΔFEB
7. ASA ASA
8. DC BF
8. CPCTC
9. DC DA
9. All sides of a rhombus are
congruent
10. AD BF
10. Substitution postulate
2
3
TEQ #6
Statement
Reason
1. ABDE is a parallelogram 1. Given
2. AE DC
2. Given
3. AE BD
3. Opposite sides of a
parallelogram are congruent
4. DC BD
4. Substitution postulate
5. DBC is isosceles
5. A triangle with two congruent
sides is isosceles
Given: ABDE is a parallelogram
AE DC
Prove : DBC is isosceles
TEQ #7
Statement
D
C
E
4
2
3
1
A
B
Reason
1. DB bisects AC
1. Given
2. 1 2
2. Given
3. AE EC
3. A segment bisector divides a
segment into two congruent parts
4. 3 4
4. Vertical angles are congruent
5. ΔAED ΔCEB
5. ASA ASA
6. DA BC
6. CPCTC
7. AD BC
7. Two lines cut by a transversal
that form congruent alternate
interior angles are parallel
8. ABCD is a parallelogram
8. A quadrilateral that has one
pair of opposite sides both
parallel and congruent is a
parallelogram
TEQ #9
Statement
Reason
1. AB BC
1. Given
2. BD BE
2. Given
3. A C
3. Assumption
4 . B B
4. Reflexive postulate
5. ABE CBD
5. ASA ASA
6. BD BE
7. A C
6. CPCTC
7. Contradiction 2,6
TEQ #10
Statement
D
A
E
F
C
B
1. ABCD is a parallelogram
1. Given
2. AE FC
3. DA CB
2. Given
Prove: ΔDAE ΔBCF
3. Opposite sides of a
parallelogram are congruent
4. A C
4. Opposite angles of a
parallelogram are congruent
5. ΔDAE ΔBCF
5. SAS SAS
Given: ABCD is a parallelogram
AE FC
Reason
Statement
D
F
4
A
1
C
2
E
B
3
Reason
1. ABCD is a parallelogram
1. Given
2. DE AC
3. BF AC
2. Given
3. Given
4. 1 and 2 are
right angles
4. Perpendicular segments form
right angles
5. 1 2
5. All right angles are congruent
6. DA CB , DA CB
6. Opposite sides of a
parallelogram are both congruent
and parallel.
7. 3 4
7. Parallel lines cut by a
transversal form congruent
alternate interior angles
8. ΔDEA ΔBFC
8. AAS AAS
9. AE FC
9. CPCTC
Prove: AE FC
TEQ #8
Q
P
Statement
T
R
Reason
1. PQ RS
1. Given
2. PQ and RS intersect at T
2. Given
3. T is the midpoint of
PS and RQ
3. Assumption
4. 𝑃𝑇 ≅ 𝑇𝑆, 𝑅𝑇 ≅ 𝑇𝑄
4. A midpoint divides a
segment into two congruent
parts.
5. ∠1 ≅ ∠2
5. Vertical angles are
congruent
6. ∆𝑃𝑄𝑇 ≅ ∆𝑆𝑇𝑅
6. 𝑆𝐴𝑆 ≅ 𝑆𝐴𝑆
S
Given : PQ RS
7.𝑃𝑄 ≅ 𝑅𝑆
PQ and RS intersect at T 8.T is not the midpoint
of PS and RQ
Prove : T is not the midpoint
of PS and RQ
7. CPCTC
8. Contradiction 1,7