Electric Dipole Moment Searches

Download Report

Transcript Electric Dipole Moment Searches

Electric dipole moment searches
Peter Fierlinger
Outline
Motivation
Different systems to search for electric dipole
moments (EDMs)
Examples
P. Fierlinger – MeNu2013
Electric dipole moment
Magnetic
moment
A non-zero particle EDM
violates P
EDM
+
Purcell and Ramsey, PR78(1950)807
… and T
(time reversal symmetry)
… assuming CPT
conservation, also CP
P. Fierlinger – MeNu2013
History
L-R symmetric
n
MSSM
~1
p
EDM limits [e.cm]
n
n+Hg
Xe
e-(Tl)
en
MultiHiggs
n
Hg `01
Hg `09
Atoms
MSSM
~/
eSM neutron
SM electron
Neutron EDM and the SM
Strong Interaction
CP-odd term in Lagrangian:
s ~
L  
GG
8
M. Pospelov, et al., Sov. J. Nucl. Phys. 53, 638 (1991)
d n ( ) ~ 
Neutron EDM dn  10-32 ecm (de < 10-38 ecm)
- dn much more difficult to calculate, but still
small
T. Mannel, N. Uraltsev, Phys.Rev. D85 (2012) 096002
P. Fierlinger – MeNu2013
e m*
~ 6.1017  e  cm
mn QCD
  10
10
Strong CP problem
E.g. Pospelov, Ritz, Ann. Phys. 318(2005)119
Khriplovich Zhitnitsky (1986),
McKellar et al., (1987)
CP violation from CKM
Baryon asymmetry
Observed: nB / nγ
~ 6 x 10-10
(BBN, CMB)
e.g. astro-ph/0603451
JETP Lett. 5 (1967) 24
‚Ingredients‘ to model baryogenesis:
Sakharov criteria
Remarks:
- Beyond-SM physics usually requires large EDMs
- EDMs and Baryogenesis via Leptogenesis?
- Also other options w/o new CP violation possible (Kostelecky, CPT)
- SUSY: small CPV phases, heavy masses, cancellations?
- What do we learn from an EDM?
Different measurements are needed!
P. Fierlinger – MeNu2013
e.g. Cirigliano, Profumo, Ramsey-Musolf JHEP 0607:002 (2006)
Expected:
nB / nγ ~ MUCH smaller
dq d~q 
Neutron,
proton
Ions
de d d
Cqe Cqq
gNN
CS,P, T
Schiff-Moment  Z²
Diamagnetic
atoms
Leptons
Schiff-Moment  Z³
Paramagnetic atoms,
polar / charged molecules
P. Fierlinger – MeNu2013
See e.g. Pospelov, Ritz, Ann. Phys. 318(2005)119
Physics behind EDMs
Atom EDM
Non-perfect cancellation of Eext in atomic shell
Paramagnetic atoms ~ electron EDM
Relativistic effects
d a  de Z 3
Sandars, 1968
Diamagnetic atoms ~ nuclear EDM
Finite size of nucleus violates Schiff‘s theorem
da  dnucl Z 2
Eext
Schiff 1963; Sandars, 1968;
Feinberg 1977; ... - 2010
Large enhancements also with deformed nuclei
(Ra, Rn, also Fr, Ac, Pa)
P. Fierlinger – MeNu2013
L. Schiff, Phys. Rev. 132, 2194 (1963)
Schiff moment:
Atomic effects
-
13 (model-dependent) parameters
TeV-scale CP odd physics, nucleon level, nucleus-level
Only 8 types of experiments
Illustration: T. Chupp et al., to be published
*)
gπ1
See also J. Engel, M. J. Ramsey-Musolf, U. van Kolck, Prog. Part. Nucl. Phys. 71, 21 (2013)
Contributions to atomic EDMs:
gπ0
P. Fierlinger – MeNu2013
Measuring the neutron EDM
Ultra-cold neutrons (UCN)
trapped at 300 K in vacuum
Ekin < 250 neV
 > 50 nm
T ~mK
Storage ~ 102 s
~ 0.5 m
P. Fierlinger – MeNu2013
(RAL/SUSSEX/ILL experiment)
B0
Ramsey‘s method
Polarization
Particle beam or trapped particles
E
1-L („detuning“)
d 
n
EDM changes frequency:
w L ~ mB + dE
P. Fierlinger – MeNu2013
2 ET N
Clock-comparison experiment
- Neutrons and 199Hg stored
in the same chamber
B =1 T ( + small vertical gradient)
Applied Gradient
Illustration (2008 data)
B0 up
B0 down
Analysis using the gradient:
dn < 2.9 x 10-26 e cm
Physical Review Letters 97 (2006) 131801.
- Gravity changes
center of mass!
Requirement: 199Hg-EDM must be small:
(btw., this also limits other parameters, e.g CS, CT...):
Frequency ratio
dHg < 3.1 x 10-29 e cm
P. Fierlinger – MeNu2013
Hg-EDM: W. C. Griffith et al., PRL 102, 101601 (2012)
Neutron and proton experiments
nEDM
Method
Goal (x10-28 ecm)
Comments
Cryo EDM
4He
1. ~ 50; 2. < 5
Larger revisions to come
ILL Crystal EDM
Solid
< 100
Diffraction in crystal: large E
FRM-II EDM
sD2
<5
Adjustable UCN velocity
JPARC
sD2
< 10
Special UCN handling
NIST Crystal
Cold beam
< 10
R&D
PNPI/ILL
Turbine
1. ~ 100; 2. < 10
E = 0 reference cell
PSI EDM
sD2
1. ~ 50; 2. < 5
Phase 1 takes data
SNS EDM
4He
<5
Sophisticated technology
TRIUMF/RNPC
4He
< 10
Phase II at TRIUMF
Jülich
B and E field ring
1. R&D; 2. 10-24; 3. 10-29
Stepwise improvements
BNL
Electrostatic ring
10-29
Completely novel technology
pEDM
P. Fierlinger – MeNu2013
‚Current generation‘ improvements
PSI (taken from B. Lauss, K. Kirch), for actual numbers see PSI EDM talk
UCN density measured in a 25l volume
extrapolated to t=0
at PSI area West-1
2010
~0.15 UCN/cm3
2011
~18 UCN/cm3
2012
~23 UCN/cm3
 correct for detector foil transmission
status (4/2013) >33 UCN/cm3 in storage
experiment (-> this is an extrapolation)
< 2 UCN/cm3 in EDM experiment
PNPI/ILL (taken from A. Serebrov, 2013):
UCN density 3-4 ucn/cm3 (MAM position)
Electric field 10 kV/cm
T(cycle) = 65 s
δDedm ~ 5∙10-25 e∙cm/day
...new electric field 20 kV/cm
δDedm ~ 2.5∙10-25 e∙cm/day
P. Fierlinger – MeNu2013
~ 2014: EDM position at PF2
1∙10-26 e∙cm/100 days
14
‚Next generation‘
Example:
Dipole fields in EDM chambers
SQUID measurements of Sussex
EDM electrodes @ PTB Berlin
Magnetic field requirements
for 10-28 ecm – level accuracy:
~ fT field drift error,
~ < 0.3 nT/m avg. gradients
df ~ 4.10-27 ecm (199Hg geom. phase)
dn ~ 1-2.10-28 ecm (UCN geom. phase)
Statistics: 103 UCN/cm3 ~ 1 year
P. Fierlinger – MeNu2013
~ 0.3 m
Pendlebury et al., Phys. Rev. A 70, 032102 (2004)
Most critical for next generation experiments:
‚geometric phases‘
200 pT pp
demagnetized:
20 pT pp
20 pT in 3 cm ~ 5 x error budget!
Further: P. G. Harris et al., Phys. Rev. A 73, 014101 (2006),
also: G. Pignol, arXiv:1201.0699 (2012).
New sources of UCN
Superthermal solid D2 or superfluid 4He-II
SD2: Molceular excitations used to cool neutrons to zero energy similar: ILL, LANL, Mainz, NCSU, PNPI, PSI, TUM …
4He: ILL, KEK, SNS, TRIUMF, …
Goal of most sources:
10³ UCN /cm³
in experiment
P. Fierlinger – MeNu2013
Magnetic fields
The smallest extended size
field and gradient on earth
- < 100 pT/m gradient in 0.5 m3
- At FRM-II EDM setup: fields designed and measured this technology is ready and available!
z = 0.5 m
z = 0 m (center)
z = - 0.5 m
x [m]
[nT]
SQUID offset in z
not corrected
y [-0.5 m – 0.5 m]
P. Fierlinger – MeNu2013
Next generation neutron EDMs
E.g. at FRM-II (reactor):
- ‚Conventional‘, double chamber
- UCN velocity tuning
- Cs, 3He, 199Hg, 129Xe (co)magnetometers
- Ready for UCN in 1 year
E.g. at SNS (spallation):
- Cryogenic, double chamber
- Neutron detection via spin dependent
3He absorption and scintillation
- 3He co-magnetometry
In the future... again nEDM with a cold beam?
Pulse structure and strong peak flux:
- Cold-beam-EDM at long-pulse-neutron source (ESS) could be
competitive? (Piegsa, PRC, soon...)
- Re-accelerated polarized UCN with pulse-structure? (PF, in prep.)
P. Fierlinger – MeNu2013
Next generation nucleon EDMs
Proton, deuteron, ... EDM
Charged particle EDM searches require the development of a new
class of high-precision storage rings
Projected sensitivity ~ 10-29 ecm: … tests  to < 10-13!
Currently 2 approaches:
- JEDI collab.: starting with COSY ring, development in stages
E, B fields
- BNL: completely electrostatic, new design
all-electric ring
Requirements:
-
Electric field gradients 17 MV/m (possible)
Spin coherence times > 1000 s (200s demonstrated at Jülich)
Continuous polarimetry < 1 ppm error (demonstrated at Jülich)
Spin tracking simulations of 109 particles over 1000 s
P. Fierlinger – MeNu2013
Proton EDM in ‚magic‘ ring
Thomas-BMT equation
p || s
(Bargmann, Michel, Telegdi)
ds
dt
= Ω ×ds =s Ω × s
Ω=
dt
e Ω = e [GB + G − 121
1 + v × B)]
v × E + 1 η(E
mc [GBmc+ G − γ 2γ− −11 v × E 2+ 2 η(E + v
d= η
d= η
e
S,
2mc
µ = 2(G + 1)
e
S,
2m
e
e
S, µ = 2(G + 1)
S,
d: electric dipole moment
2mc
2m
G=
g− 2
,
2 g
G=
× B)]
−2
,
2
µ: magnetic moment, g:g− factor , G: anomalous magnetic
Magic
ring:
moment
d: electric
dipole moment
γ: Lorentz factor
-µ:Purely
>0
magneticelectric
moment,ring
g:g− only
factor for
, G: G
anomalous
magnetic
-moment
E and B ring for other isotopes
V. Bargmann, L. Michel and V. L. Telegdi, Phys. Rev. Lett. 2 (1959) 435.
γ: Lorentz factor
20 / 50
V. Bargmann, L. Michel and V. L. Telegdi, Phys. Rev. Lett. 2 (1959) 435.
Electrostatic ring
proposal at BNL
20 / 50
P. Fierlinger – MeNu2013
Figures: H. Stroeher
V. Bargmann, L. Michel and V. L. Telegdi, Phys. Rev. Lett. 2 (1959) 435.
- Frozen
horizontal
spin precession:
Spin
Motion is governed
by Thomas-BMT
Thomas-BMT
equation equation
(Bargmann,
Michel,
Telegdi)
- EDM
turns
s out
of plane
Spin Motion
is governed
by Thomas-BMT
equation
Octupole deformations: 225Ra
Ra Oven:
Nuclear Spin = ½
t1/2 = 15 days
Dipole trap: Trimble et al. (2010)
MOT: Guest et al., PRL (2007)
- Goal ~ 10-28 ecm
- Main issue: statistics
(Project X?)
Why trap 225Ra atoms:
efficient use of the rare 225Ra atoms
high electric field (> 100 kV/cm)
long coherence times ~ 100 s
negligible “v x E” effect
Zeeman
Slower
Magneto-optical
trap
EDM
probe
Optical
dipole trap
P. Fierlinger – MeNu2013
Figures: Z.-T. Lu
Schiff moment of 225Ra, Dobaczewski & Engel, PRL (2005)
Enhancement factors: EDM (225Ra) / EDM (199Hg) ~ 103
Lepton EDM measurements
Best limits:
Shapiro, Usp. Fiz. Nauk., 95 145 (1968)
Mainly paramagnetic systems and polar molecules
- Cs, Tl, YbF: de < 1.05.10-27 ecm (E. Hinds et al.)
- Soon: ThO – currently taking data
- Molecules, molecular ions, solids: PbO, PbF, HBr, BaF, HgF, GGG,
Gd2Ga5O12 etc.
- dGGG ~ < 10-24 ecm
- d < 1.8 . 10-19 (90%) ecm from g-2
- d < 1.7 . 10-17 (90%) ecm from Z
Diamagnetic atoms also
contribute to such limits!
Tl, YbF limits together,
courtesy T. Chupp (2013)
P. Fierlinger – MeNu2013
The ACME experiment
-
-
ThO molecules:
100 GV/cm internal electric field due to level structure,
polarizable with very small lab-field
Small magnetic moment, therefore less sensitive to B-field quality
High Z: enhancement
Well understood system
Lasers to select states
High statistics:
strong cold beam
Status: taking data with 10-28 ecm /day
P. Fierlinger – MeNu2013
Figures: J. Doyle
Summary
New EDM experiments are highly sensitive probes for new physics
Several experiments must be performed to understand the underlying
physics. (Then, also a measured limit may be a discovery...)
Experimental techniques span from
table top AMO - solid state - low temperature – accelerators - neutron
physics
Next generation precision within next
2 years: nEDM ~ few 10-27 ecm
atoms ~ < 1.10-29 ecm (ThO, 199Hg, 129Xe)
6 years: nEDM ~ few 10-28 ecm
atoms - hard to predict
... Note: my nEDM time estimate stayed constant since 2009
P. Fierlinger – MeNu2013
Re-acceleration of UCN
A possibility to produce extremely high brightness ‚cold‘ neutron beams:
concept demonstrated (Rauch et al.)
Next step:
Perfect polarization
(PF et al.)
Again: nEDM measured with a cold beam?
Beam-EDM at long-pulse-neutron source could be
competitive (Piegsa et al., to be published soon)
Why not use a combination: perfectly polarized, reaccelerated high brightness beam with extremely well
known time structure for in-beam EDM?
S. Mayer et al., NIM A 608 (2009) 434–439
New concepts?
Supersymmetry
More sources of CP violation
~ EDMs at 1 loop level
dn  1026 1028 ecm
2
d Hg
 1 T eV
 2 10 
 ecm
M


27
Boson coupling
Hg EDM ~ exp. Limit!
MSSM for
M = 1 TeV,
tan =3
Consequences
- small phases:
problem for baryogenesis
- cancellations: requires tuning
- heavy masses
P. Fierlinger – MeNu2013
Higgsino mass phase
Pospelov, Ritz, Ann. Phys. 318(2005)119
MSSM example: