From Pipeline Data to Inspection Planning

Download Report

Transcript From Pipeline Data to Inspection Planning

From Pipeline Data to Inspection Planning
Jean Alain MOREAU, Marie PAJOT, Florian FABRE, Yves GIRAUD
Integrity Management
1
TIGF at a glance
In 2005, the Gas & Power business line of TOTAL creates TIGF
TIGF operates :
5 000 km of natural gas transmission pipelines (13% national network),
6 recompression units (100 MW)
5.4 Gm3 underground storage facilities (22% national capacity).
TIGF does not own any gas, but
transports and stores it for others
gas market actors.
2
The “AMF” decree dated August 4th, 2006 :
 Own a Geographical Information System (GIS) for 2009 with a Technical
Data Base for 2011
 VIGIE
– Visualisation et Information Géographique des Installations
Enterrées (Geographical Visualization and Information of Underground
Installations)

Plan inspections, surveys and mitigations
 OGIC - Outil de Gestion de l’Intégrité des Canalisations
PIMS - Pipeline Integrity Management System
 For TIGF, these are 2 federating projects which shall :

Allow to share data and informations with all users,

Help with decision making
3
The Technical Database
4
2 different Tools, 1 single Database to meet
regulatory compliance
OGIC
VIGIE
Geographic Information System
Analyse and Display PODS data
Threat Analyse
Mitigation and Inspection Planning
PODS
Technical Data Base
Recording & georeferencing data
Maximo
Work Order
Inspection, CP
On the field
ConstructionDalle
Environment
Diameter
Pressure
Thickness
Join, Coating
Geographic
features,
Structure
PODS, the heart of VIGIE and OGIC :
Built on V 4.0.2
Experience of many pipeline network operators, mainly oil and gas
Independent of the GIS publishers
Exhaustive description of pipeline networks
3D imaging of events that form or describe the pipeline
Complex work
To collect and indentify all available data
Mainly manual tasks
In few numbers, it’s about :
70 types of various documents used
10 000 documents collected from the Archives
40 000 A4 format scanned
3 years, 65 000 hours (until 20 persons)
Cost : 2 MEUR for the actual Database
Without the pipeline environment (1 MEUR)
Without the survey, inspection, repairs and CP data (for 2011)
6
Geometry
7
Data reprocessing
8
Old data reprocessing methodology
Step1
CMMS
Technical
data
Document
Management
Data Base
Scanning
and
Compilation
Preparation of a
technical electronic
document
management
Query/
report
edition
Step 2
Data
analysis
Detailed Pipesegment Files (FIT)
Step 4 : Feeding
Step 3:
3D Drawing
O2GB2D
Drawing : .dgb and 3D
BDT Oracle
On PODS model
Add complementary data (concrete
slab, casing, crossing…)
Environment DB
9
Step by step data reprocessing
Step1
CMMS
Technical
data
Document
Management
Data Base
Scanning
and
Compilation
Step 2
Data
analysis
Detailed Pipesegment Files (FIT)
Step 4 : Feeding
Step 3:
3D Drawing
O2GB2D
Drawing : .dgb et 3D
BDT Oracle
On PODS model
Add complementary data (concrete
slab, casing crossing…)
10
Step 1 : Scanning and Compilation
2006 : Modification
1992 : Construction
2006: Pressure test
11
Step 2 : Data analysis
2006 : Modification
1992 : Construction
FIT
2006: Pressure Test
12
Step 3 : 3D Drawing
F
I
T
2D
3D
13
Step 4 : Database feeding (PODS)
14
What Kind of data in PODS :
Network :
LINES : Pipelines
SITES : Compression station, Valve and Delivery station, Security valve, CP
Data :
Pipe length, weld join, tee, elbow, closure...
Nominal diameter, Wall thickness, Steal grade, coating, MAOP
Dot Class
Crossing (river, road, railroad,...)
Protection (casing, Concrete slab, river weight),
Marker
Building and housing (HI, IGH, ERP, ICPE)
In the future :
Nominal Depth of cover, temperature
Defects, Repairs, Regulatory compliance effects
TIGF PODS Interpretation : PODS 4.0.2
TIGF used the field “X_Guid” in order to know quickly the link between event and line
Nomenclature globale
AAAAAAXXX111111111-2222S3333P4444
Identification de l’évènement
Identification
complémentaire
(du sous-type s’il
existe)
Identification
des points
crées (*)
AAAAAA
XXX
111111111
-2222
S3333
P4444
code
ouvrage
code
correspondant
au type
d’événement
incrément
global pour les
évènements
ordre dans
lequel l’élément
apparaît dans
l’ouvrage
sous-type
(Pipe_Length est
un sous type de
Pipe_Segment)
incrément pour
chaque
coordonnée
créée
TIGF collect data by LINE (ouvrage lineaire) (pipeline between 2 valves station) and
doesn’t used the SERIES table
=> 1 ROUTE = 1 SERIE
When a modification appears on a pipeline, TIGF delete the former pipeline and
regenerate the new one (due to the quantity of link between data)
A table allows to manage the pipeline creation, delete and re generation.
OUVRAGE VALIDE EXPORT
16
SUPPRESSION
AJOUT MAJ DATE_DATA LONGUEUR
NBPIECEFORME
NBTUBE NBSOUDURE
07A01C
-1
-1
0
0
-1
21-juin-10
4390,41
16
417
432
07A02C
-1
0
0
0
0
22-oct-09
8728,57
5
785
790
07A03C
-1
0
0
0
0
28-juil-09
22604
17
1999
2016
TIGF PODS Interpretation : PODS 4.0.2
TIGF created a layer named STRUCTURE : Association of all the events in
FEATURE_TABLE wich create the complete pipeline
Field FEATURE_TABLE.HYSTORY_TABLE_NAME = ‘STRUCTURE
FEATURE_ID
CLOSURE
ELBOW
FLANGE
LAUNCHER_RECEIVER
PIPE_JOIN
PIPE_LENGTH
REDUCER
TEE
VALVE

TYPE_CL
MULTIPOINT
MULTIPOINT
MULTIPOINT
MULTIPOINT
POINT
LINESTRING
MULTIPOINT
MULTIPOINT
MULTIPOINT
CATEGORY_CL
DESCRIPTION
PIPELINE01
Fermeture, Embout
PIPELINE01
Coude
PIPELINE01
Bride
PIPELINE01
Gare de racleur
PIPELINE02
Soudure
PIPELINE02
Longueur de tube
PIPELINE01
Réduction
PIPELINE01
Te
PIPELINE01
Vanne
TABLE_NAME
Closure
Elbow
Flange
Launcher_Receiver
Pipe_Join
Pipe_Length
Reducer
Tee
Valve
HISTORY_TABLE_NAME
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
STRUCTURE
The accuracy of the drawing of a pipeline in the database could be check trough
different ways:

LINE

ROUTE

SERIES

PIPE_SEGMENT

STRUCTURE LAYER : PIPE LENGTH, PIPE JOIN, ELBOW, TEE, ….
17
Modification of PODS 4.0.2 :
Try to be faithful to PODS spirit
Modification of existing field
Table
CASING
COORDINATE
COORDINATE
COORDINATE
EVENT_RANGE
FEATURE_TABLE
LINE
LINE_HIERARCHY
LINE_HIERARCHY
PIPE_BEND
PIPE_BEND
ROUTE
STATION_POINT
Description
NOMINAL_WALL_THICKNESS_GCL
X_COORD
Y_COORD
Z_COORD
FEATURE_ID
FEATURE_ID
LINE_GUID
PARENT_LINE_GUID
LINE_HIERARCHY_GUID
VERT_ANGLE
HORIZ_ANGLE
LINE_GUID
LINE_GUID
Structure
NUMBER(6,4)
FLOAT(15)
FLOAT(15)
FLOAT(15)
VARCHAR2(16)
VARCHAR2(16)
CHAR(38)
CHAR(38)
CHAR(38)
NUMBER(5,3)
NUMBER(5,3)
CHAR(38)
CHAR(38)
New_Structure
NUMBER(6,2)
FLOAT(32)
FLOAT(32)
FLOAT(32)
VARCHAR2(38)
VARCHAR2(38)
VARCHAR2(38)
VARCHAR2(38)
VARCHAR2(38)
NUMBER(6,3)
NUMBER(6,3)
VARCHAR2(38)
VARCHAR2(38)
Motif
Diminution du nombre de décimales
Augmentation de la taille du champ
Augmentation de la taille du champ
Augmentation de la taille du champ
Augmentation de la taille du champ
Augmentation de la taille du champ
Changement du type de champ
Changement du type de champ
Changement du type de champ
Augmentation de la taille du champ
Augmentation de la taille du champ
Changement du type de champ
Changement du type de champ
Add New fields
Table
ALIGNMENT_SHEET
ALIGNMENT_SHEET
CASING
LINE
LINE
LINE
LINE
PIPE_SEGMENT
PIPE_SEGMENT
PIPE_SEGMENT
REDUCER
REDUCER
STRUCTURE
STRUCTURE
VENT_PIPE
18
Description
PLAN_NUMBER
CODE_PLAN
TYPE_CL
PROPRIETAIRE_CL
OPERATING_STATUS_GCL
CONCESSION_CL
CODE_OUVRAGE_JURIDIQUE
NUMBER_OF_AFFAIR
MINIMAL_WALL_THICKNESS_GCL
EXTERNAL_DIAMETER_GCL
CHAMFER_WALL_THICKNESS_IN_GCL
CHAMFER_WALL_THICK_OUT_GCL
VISITOR_COUNT
EMPLOYER_COUNT
TYPE_CL
Structure
VARCHAR2(10)
VARCHAR2(12)
VARCHAR2(16)
VARCHAR2(10)
VARCHAR2(16)
VARCHAR2(2)
VARCHAR2(10)
VARCHAR2(15)
NUMBER(6,4)
NUMBER(8,4)
NUMBER(6,4)
NUMBER(6,4)
NUMBER(6)
NUMBER(6)
VARCHAR2(16)
18
PODS data organization:
Schema based on ORACLE10g
Etape 1 : Saisie et
interprétation de la donnée
Etape 2 : Vérification et
génération des géométries
Importation par dump
Vers un schéma Oracle PODSI
PODSI
Etape 3 :
Paramétrage du SIG
VIGIE
GEOMETRY
CARTO






Récolte des données
Saisie et ordonnancement de la
documentation + Numérisation
Saisie des carnets de soudures
Interprétation des données
Intégration des données recoltées
dans un espace géoréférencé
Alimentation des caractéristiques des
Event-range
Localisation :
Action :
Sous-traitant
Actavision
Génération des géométries
Via l’outil SIG (GEOMEDIA)



Vérification des
données
Génération des
Géométries
Gestion de projet
Localisation :
Action :
TIGF
TIGF



Gestion des droits
Gestion de paramètres
pour le SIG
Gestion des fonctionnalités
spécifiques
Localisation :
Action :
TIGF
ATOS/INTERGRAPH
19
19
Data sharing with GIS
20
Data available for all
An architecture, from database to end users
Etc.
Structure
Viewer
Treatment
Aerial Photography
Pipelines
Land register
County
Topographic map
Database
Software
Users
21
The GIS software
INTERGRAPH software
Geomedia Pro + Transportation for administrators (7)
Geomedia WebMap Pro for users (300)
Business functions :
Data Migration to create Geometry
Dynamic Segmentation, 3D modelling
Emergency management, network optimisation
User functions :
Geographic map position,
Looking for a pipeline
Place a pipeline in its environment
Cost :1,3 MEUR
22
Inspection Planning with PIMS
23
A decision support tool to plan inspection and surveys

PIMS is named OGIC
Based on


A Threat Model (Threat Tree) and a methodology – TAME (BV + ATP)

A Structured database - PODS
Supported by Continuous improvement cycles common to other management
systems

Seeking to


Protect the assets

Identify and prioritize pipelines by threat level

Capitalize knowledge

Plan integrity actions (inspection / surveys / mitigations)

Optimize both capital and operating expenditures
Integrity Model : Threat definition
Safety
Integrity
involves loss of integrity
consequences to Human and to
Natural Environment
involves Threats to pipelines
Risk
(Decrease)
Mitigation Measures
Surveys and Inspection
25
Integrity Model : Concept
Integrity Cycle
Carry out mitigations
Calculate loss
consequences
Calculate
level of
threat
26
Integrity Model : the Threat tree

Out of 100 threats in the complete model

45 are already resident in PODS

18 require specific analysis by GIS

37 are borrowed from external database
Integrity
Model :
Threat
identification
and
positioning
Depth
of cover
Soil
resistivity
Pipe CP
m
0
1.2
Ω.m
50
10
0
0.85
V
DCVG
results
OK
Feature
OK
Defect
OK
Remaining
cycles (PIG)
Threat
level
28
Mitigations and “What If” studies
1. Mitigation proposals
2. The ‘‘what-if’’ function
To assess the effect of the various proposed
measures to lower the level of threat.
29
Inspection and survey plan (PIMS approach)
Validation of the model in a global process management
Level of
threat
Inspection and survey rules
Do
Integrity
Tasks
Plan
Operators
Analyse of
Plan
Check
Follow
progress
pipelines
and Integrity
Tasks
Schedule
OGIC
VIGIE : GIS View
Act
Maximo/VIGIE
Alignement Sheet
Refine Integrity
Model
TAME/OGIC
30
To conclude
31
To conclude
VIGIE (GIS) and OGIC (PIMS) projects :
structure and share the information,
make TIGF regulatory compliant,
highlight true threats incurred by the pipelines,
outlay an inspection program based on true threats,
optimize actions means and resources
Nevertheless,
Survey (foot, car, plane ..) is, and remains the main guaranty of
the underground networks safety, for civil work carried out by
third parties that will never be completely controlled.
32
Thank you for your kind attention
33