Introduction to ROBOTICS

Download Report

Transcript Introduction to ROBOTICS

Introduction to ROBOTICS

Kinematics of Robot Manipulator

PROF.UJWAL HARODE

UJWALHARODE 1

Outline

Review Robot Manipulators -Robot Configuration -Robot Specification

Number of Axes, DOF

Precision, Repeatability Kinematics -Preliminary

World frame, joint frame, end-effector frame

Rotation Matrix, composite rotation matrix

Homogeneous Matrix -Direct kinematics

Denavit-Hartenberg Representation

Examples -Inverse kinematics

UJWALHARODE 2

Review

What is a robot?

By general agreement a robot is: A programmable machine that imitates the actions or appearance of an intelligent creature–usually a human.

To qualify as a robot, a machine must be able to: 1) Sensing and perception: get information from its surroundings 2) Carry out different tasks: Locomotion or manipulation, do something physical–such as move or manipulate objects 3) Re-programmable: can do different things 4) Function autonomously and/or interact with human beings Why use robots?

–Perform 4A tasks in 4D environments 4A: Automation, Augmentation, Assistance, Autonomous 4D: Dangerous, Dirty, Dull, Difficult UJWALHARODE 3

Manipulators

• • • • •

Robot arms, industrial robot Rigid bodies (links) connected by joints Joints: revolute or prismatic Drive: electric or hydraulic End-effector (tool) mounted on a flange or plate secured to the wrist joint of robot

UJWALHARODE 4

Manipulators

Robot Configuration

Cartesian: PPP Cylindrical: RPP Spherical: RRP Articulated: RRR

SCARA: RRP (Selective Compliance Assembly Robot Arm)

Hand coordinate: n: normal vector; s: sliding vector; a: approach vector, normal to the tool mounting plate 5

Manipulators

• •

Motion Control Methods

• •

Point to point control a sequence of discrete points spot welding, pick-and-place, loading & unloading

• •

Continuous path control follow a prescribed path, controlled path motion Spray painting, Arc welding, Gluing

UJWALHARODE 6

Manipulators

• • • • •

Robot Specifications Number of Axes

• • •

Major axes, (1-3) => Position the wrist Minor axes, (4-6) => Orient the tool Redundant, (7-n) => reaching around obstacles, avoiding undesirable configuration Degree of Freedom (DOF) Workspace Payload (load capacity) Precision v.s. Repeatability

UJWALHARODE 7

What is Kinematics Forward kinematics

z

Given joint variables

q

 (

q

1 ,

q

2 ,

q

3 ,

q

4 ,

q

5 ,

q

6 , 

q n

)

Y

 (

x

,

y

,

z

,

O

,

A

,

T

) End-effector position and orientation, Formula?

UJWALHARODE

y x

8

What is Kinematics Inverse kinematics End effector position and orientation (

x

,

y

,

z

,

O

,

A

,

T

)

q

 (

q

1 ,

q

2 ,

q

3 ,

q

4 ,

q

5 ,

q

6 , 

q n

) Joint variables -Formula?

UJWALHARODE 9

Forward kinematics

x

0 

l

cos 

y

0 

l

sin  Inverse kinematics   cos  1 (

x

0 /

l

) Example 1 UJWALHARODE

y

0 

l y

1

x

1

x

0 10

Preliminary

Robot Reference Frames 1. World frame 2. Joint frame 3. Tool frame

z

T

z x y y

T

x

W R UJWALHARODE 11

Coordinate Transformation

z

Reference coordinate frame –XYZ Body-attached frame-ijk Point represented in XYZ 

P xyz

P p xyz x

i x   [

p p x y

, j y

p y

 ,

p z

]

T p z

k z Point represented in uvw: 

P uvw

p u

i u 

p v

j v 

p w

k w

w

O, O’

v

UJWALHARODE Two frames coincide

P u y

12

x

Properties: Dot Product

Let and be arbitrary vectors in and be the angle from to , then

x

y

x y

cos 

Properties of orthonormal co-ordinate frame

Unit vectors are mutually perpendicular 

i

i k

    

j

k j

    0 0 0 UJWALHARODE | | | 

i

k j

 | | |    1 1 1 13

Coordinate Transformation Reference coordinate frame OXYZ Body-attached frame O’uvw

z P P xyz

RP uvw w v u

O, O’ How to relate the coordinate in these two frames? UJWALHARODE

y

14

x

Basic Rotation

p x p p

OX, OY, OZ axes, respectively – Since

P

p u

i u 

p v

j v 

p w

k w

p x

 i x 

P

 i x  i u

p u

 i x  j v

p v

 i x  k w

p w p y

 j y 

P

 j y  i u

p u

 j y  j v

p v

 j y  k w

p w p z

 k z 

P

 k z  i u

p u

 k z  j v

p v

 k z  k w

p w

UJWALHARODE 15

Basic Rotation Matrix

   

p p y p x z

         i k j x y z    i u i i u u i j x k z y  j v  j v  j v Rotation about x-axis with 

Rot

(

x

,  )    1   0 0 0

C

S

 

C

0

S

      j i x k z y  k w  k w  k w        

p p p w u v

   

w z

x u

UJWALHARODE

P v y

16

UJWALHARODE

Rot

(

y

,  )      

C

 0

S

 0 1 0

S

0 

C

    

Rot

(

z

,  )     

C S

0   

S

C

 0 0   0 1   17

Example 2 • frame rotates 60 degree about the OZ axis of the reference frame. Find the coordinates of the point relative to the reference frame after the rotation.

a

xyz

    0 

Rot

(

z

, 60 )

a uvw

0 0 .

5 .

866  0 .

866 0 0 .

5 0 0 1       4   3 2          4 0 .

2 598 .

964     UJWALHARODE 18

Composite Rotation Matrix

A sequence of finite rotations

– matrix multiplications do not commute – rules: • if rotating coordinate O-U-V-W is rotating about principal axis of OXYZ frame, then Pre-multiply the previous (resultant) rotation matrix with an appropriate basic rotation matrix • if rotating coordinate OUVW is rotating about its own principal axes, then post-multiply the previous (resultant) rotation matrix with an appropriate basic rotation matrix UJWALHARODE 19

Find the rotation matrix for the following operations:

Rotation  about OY axis Rotation  about OW axis Rotation  about OU axis

Answer

...

R

  

Rot

(

y

,  )

I

3

Rot

(

w

,  )

Rot

(

u

,  )     C 0 S   0 1 0     

C

C

S S

 

C

 S 0  C         

C S

0  

S

S

  

C S

0  

C

S

C

S

S C

C

 

C

 

C

S

 0 0 1         1 0 0

C S

0   

C

0

S

 

C C

S

  

C

S

C

  

S S

 

C

S

S

S

         Pre-multiply if rotate about the OXYZ axes Post-multiply if rotate about the OUVW axes UJWALHARODE 20

Homogeneous Transformation

Special cases 1. Translation

A T B

   

I

3  3 0 1  3

A r o

' 1    2. Rotation

A T B

   

A R B

0 1  3 Homogeneous transformation matrix

F

   

R

3  3 0 0 3  1 1   

P

3  1 1    UJWALHARODE 21

Homogeneous Transformation

• •

Composite Homogeneous Transformation Matrix Rules:

– Transformation (rotation/translation) w.r.t (X,Y,Z) (OLD FRAME), using pre-multiplication – Transformation (rotation/translation) w.r.t (U,V,W) (NEW FRAME), using post-multiplication UJWALHARODE 22

Orientation Representation

Description of Roll Pitch Yaw

Z

 ROLL  PITCH 

Y X

YAW UJWALHARODE 23