Transcript DtiStudio
DtiStudio Susumu Mori Johns Hopkins University Overall direction of DTI research Smaller b (<1,200), fewer directions (<30), 2mm, 5 min DWIs Tensor calculation Larger b (> 3,000), more directions (>60), lower resolution, longer time High Angular-Resolution Diffusion Imaging Overall direction of DTI research Smaller b (<1,200), fewer directions (<30), 2mm, 5 min DWIs Tensor calculation Overall direction of DTI research Smaller b (<1,200), fewer directions (<30), 2mm, 5 min DWIs • • • • • Tensor calculation Automated and quantitative quality control pipeline Fully automated cloud-based web-based pipeline Integration of image quantification schemes Dynamic programming for fiber tracking Automated fiber tracking DtiStudio How DTI studies could go wrong Motion Registration Eddy-current distortion Motion monitoring Eddy current monitoring Outlier pixels (dropout, ghost) Slice rejection Pixel rejection Motion monitoring Non-physiological motion XMR-SNR-test-AH: dtRegVoltranslationy XMR-SNR-test-AH: cumulateddtrotationmetric 3 4 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 3.5 2 Rep 1 Rep 2 Rep 3 Rep 4 Rep 5 DWI rotationmetric: degree DWI tanslationy: mm 3 1 0 -1 -2 2.5 2 1.5 1 0.5 -3 20 40 60 80 100 # of DWI 120 140 160 0 20 40 60 80 100 # of DWI 120 140 160 Eddy current monitoring Importance of tensor fitting quality Images that CAN’T be registered absolute fitting error before registration: 4 3.5 4.5 A 3 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 apparent translation: mm 2.5 3 histogram eddyzmetrics 0.02 4.5 4 absolute fitting error after registration: C 3.5 B 3 2.5 2 1.5 1 0.5 0 0 0.5 1 1.5 2 apparent translation: mm histogram eddyB0metrics 2.5 2.5 3 Outlier rejection 80 50 60 100 a b c 150 40 20 d 0 50 100 150 80 50 60 100 e f g 150 40 20 h 0 50 100 150 50 1.5 1 100 i j k 150 2 l 0.5 50 100 150 0 Population report Matlab code Original image Select subject to show results After registration Artifact masked MriStudio Pipeline DtiStudio DWIs DiffeoMap RoiEditor 254 structures Example of multi-modal analysis Automated pipeline Read DICOM data Tensor calculation Scalar map calculation QC report Save images Skull-strip Linear registration Save images Atlas-based parcellation Save tables Database solution Initiate image analysis pipeline Specify the data for analysis Results become available Calculation starts Fiber tracking: path-generation Automated parcellation of the brain Fiber tracking: path-generation Overall direction of DTI research Smaller b (<1,200), fewer directions (<30), 2mm, 5 min DWIs • • • • • Tensor calculation Automated and quantitative quality control pipeline Fully automated cloud-based web-based pipeline Integration of image quantification schemes Dynamic programming for fiber tracking Automated fiber tracking Acknowledgment • Program development – Hangyi Jiang – Xin Li • Server implementation – Anthony Kolasny – Can Ceritoglu – Bill Schneider • Quantification module – Michael Miller – Yue Li – Xiaoying Tang • Atlas generation – Kenichi Oishi – Anderia Faria