Transcript Document

Vibrational spectra of halobenzene cations in the ground
~ 2B electronic states obtained by one-photon
and B
2
mass-analyzed threshold ionization spectrometry
Chan Ho Kwon, Hong Lae Kim, and Myung Soo Kim*
National Creative Research Initiative Center for Control of Reaction
Dynamics and School of Chemistry, Seoul National University,
Seoul 151-742, Korea
Contents
Ⅰ. Motivation for research
Ⅱ. Mass-analyzed threshold ionization (MATI) spectroscopy
Ⅲ. MATI spectra in the ground electronic state
~ 2B excited electronic state
Ⅳ. MATI spectra in the B
2
Ⅴ. Selection rule
Ⅵ. Summary and conclusion
Ⅰ. Motivation for research
A. Excited electronic states of polyatomic ions
Cases of very long-lived (‘metastable’) excited electronic
states are very rare for polyatomic (n≥4) ions.
Decay mechanisms
(ⅰ) Internal conversion to the ground electronic state
(ⅱ) Dissociation on a repulsive electronic state
(ⅲ) Radiative decay
Absolute prevalence of (ⅰ) has led to the theory of mass
spectra (RRKM-QET)
‘Molecular ions undergo internal conversion to the ground
state and dissociate statistically (RRKM or microcanonical
transition state theory) there in’
B. Discovery of very long-lived excited electronic
states of polyatomic ions
1) Charge exchange ionization
A+ + B → A + B+
E = IE(B) - RE(A+)
IE : Ionization energy
RE : Recombination energy of A+
= Ionization energy of A to the state in which A+ is in.
For charge exchange under near thermal condition involving
polyatomics, cross section is very large only when
E≤0
Exoergicity criterion’
2) Halobenzene and related ions
Some electronic states of C6H5X+• ( X = Cl, Br, I )
Ground state neutral
3b1
3b1 , 1a2 - e1g of benzene
1a2
6b2
6b2
- n(X3p∥)
2b1
- n(X3p⊥)
2b1
Ions
~
(b1)-1 X2 B1
~
(a2 )-1 A2 A2
~
(b2 )-1B2 B2
~
(b1)-1C2 B1
These are states appearing in photoelectron spectra.
C6H5C≡N+• and C6H5C≡CH+•
Low – lying electronic states are similar to C6H5X+•
~
B state - Loss of e- from (C≡N∥) or (C≡C∥)
~
C state - Loss of e- from (C≡N⊥) or (C≡C⊥)
TABLE 1. Collision gases, their ionization energies(IE) in eV, and success / failure
to generate their ions by charge exchange with some precursor ions
Collision gas
Precursor ions
IE, eV
C6H5Cl+
(CH3)2CHNH2
1,3-C4H6
(butadiene)
CS2
8.72
O
10.07
CH3Br
10.54
C2H5Cl
10.98
CH3Cl
11.28
O
C2H6
11.52
X
O2
12.07
Xe
12.12
CHF3
13.86
C6H5Br+ C6H5CN+ C6H5CCH+
O
9.07
~)
Recombination energy( X
O
O
C6H5I+
C6H5F+
O
X
O
O
O
O
O
X
X
X
X
O
X
O
X
X
X
X
X
9.066
8.991
9.71
8.75
8.754
9.20
~ ) 11.330
Recombination energy( B
10.633
11.84
10.36
9.771
12.24
Discovery
~ states of C H Cl+• , C H Br+• , C H CN+• , C H CCH+•
B
6 5
6 5
6 5
6 5
are very long – lived ( > 10 s)
 All the excited electronic states of C6H5F+• , C6H5I+•
do not have long lifetimes.
Photoelectron spectra
Ⅱ. Mass-analyzed threshold ionization(MATI) spectroscopy
A. Principle
1) Outline
Photo-excite a molecule to a Rydberg state (high n) lying just
below ( < 10cm-1) the ionization limit.
Some ions and electrons are generated by direct
photoionization (direct ions/electrons). Remove these.
Ionize the molecule in Rydberg state (Rydberg neutral) by
applying electric field (pulse-field ionization, PFI).
Scan h. Record spectrum by detecting
electrons → Zero electron kinetic energy spectrum (ZEKE).
ions → MATI
2) MATI vs. ZEKE
Weakness
Poor resolution [ZEKE : 5cm-1 (conventional), 0.1 cm-1
(high resolution), MATI : 10cm-1], related to removal of
heavy ions compared to removal of e- in ZEKE.
Strength
Identification of ions contributing to each peak.
Generation of state-selected ions.
3) Lifetime of a Rydberg neutral
Rydberg states (high n , low ℓ)
 ∝ n3
n = 200 → ~ 100 nsec
ZEKE states (high n , ℓ , m )
 ∝ n4
n = 200 → ~ 20 sec
A successful MATI detects ions from ZEKE states
generated by PFI after a long delay time (sec).
B. Photoexcitation
h2
h
IE = 8 ~ 12eV (100 ~ 150nm)
h1
two-photon 1 + 1
one-photon
Two-photon MATI
Difficult to control multiphoton processes.
Applicable to systems with a stable intermediate state with E < 5.6 eV
= 220nm. For most neutrals, 1st excited states are not stable.
One-photon MATI
No complications as above.
Requires vacuum ultraviolet (VUV) laser.
C. Instrumentation
1) VUV laser
Four-wave difference frequency mixing in Kr
5p[1/2]0
h3
5p[5/2]2
h2
h1 = h2 = 212.6 nm or 216.7 nm
h4
h1
4p6
h3 = 400 ~ 800 nm
h4 = 122 ~ 145 nm, 10 nJ
Four-wave sum frequency mixing in Hg
h3
71S0
h1 = h2 = 312.8 nm
h2
h4
h3 = 340 ~ 650 nm
h4 = 107 ~ 126 nm, 20 nJ ~ 200nJ
h1
61S0
2) MATI spectrometer
TOF
MCP
Ar
Out
Out
Temperature-controlled
pulsed valve
LiF lens
UV, S
Achromatic
lens
Hg
Water in
Water in
Heating
block
(b) Side view
(a) Top view
detector
photoionization
chamber
MgF2
lens
Kr cell
dichroic mirror
50cm lens
TOF
molecular beam
G
E1
E2
E3
VUV
3) Pulsing scheme
photoexcitation
E1
950V
E2
1200V
E3
PFI delay
Ⅲ. MATI spectra in the ground electronic state
Ion Signal
C6H535Cl+•
C6H537Cl+•
Photon Energy, cm-1
Ion Signal
C6H579Br+•
C6H581Br+•
Photon Energy, cm-1
C6H5I+•
Photon Energy, cm-1
C6H5F+•
Photon Energy, cm-1
~ 2B ) and ~ 2B excited states
Ionization energies (IE) to the ground (X
B 2
1
of chloro-, bromo-, iodo-, and fluorobenzene cations, in eV
~2B )
IE( X
1
~2B )
IE( B
2
Ref.
9.0728 ± 0.0006
9.0723 ± 0.0006
9.0720 ± 0.0006
9.066 ± 0.008
11.3327 ± 0.0006
Bromobenzene
8.9976 ± 0.0006
8.991 ± 0.008
8.98 ± 0.02
10.6406 ± 0.0006
10.633 ± 0.008
Iodobenzene
8.7580 ± 0.0006
8.754 ± 0.008
8.77 ± 0.02
This work
PES
PEPICO
Fluorobenzene
9.2033 ± 0.0006
9.2033 ± 0.0006
9.2044 ± 0.0005
9.18 ± 0.02
This work
MATI
ZEKE
MPI-PES
Chlorobenzene
11.330 ± 0.008
This work
MATI
ZEKE
PES
This work
PES
MPI-PES
Vibrational frequencies (in cm-1) and their assignments for the
~2B ) chlorobenzene cation.
ground state ( X
1
Mode
symmetry
(Wilson)
1
4
6a
6b
7a
8a
8b
9a
10b
11
12
16b
18a
18b
19a
6a2
6a3
6a4
6a5
7a2
6a16b1
6a1121
6a26b1
6a111
6a17a1
7a1121
8a1121
a1
b1
a1
b2
a1
a1
b2
a1
b1
b1
a1
b1
a1
b2
a1
Neutral
1003
685
417
615
1093
1586
1598
1153
741
197
706
467
1026
287
1482
PES
427
1121
MPI-PES
MATI
ZEKE
950
971
975
422
510
1100
420
526
1115
422
531
1116
1180
1194
1200
720
714
393
992
716
394
995
311
1429
960
This work
C6H535Cl+• C6H5 37Cl+•
974
600(?)
419
527
1118
1554
1593
1193
771
141
713
482
991
286
1411
838
1260
1677
2097
2235
950
1135
1368
1394
1533
1828
2280
972
600(?)
415
530
1114
1554
1592
1193
771
139
710
482
991
1408
829
1246
1661
2078
2225
950
1131
1360
1392
1527
1821
2277
Vibrational frequencies (in cm-1) and their assignments for the
~ 2B ) bromobenzene cation.
ground state ( X
1
Mode
symmetry
(Wilson)
1
2
6a
6b
7a
8a
8b
9a
9b
10b
11
12
14
16a
18a
18b
19a
20a
6a2
6a3
6a4
6a5
6a16b1
6a7a
6a27a
7a12
6a8a
6a37a
6a28a
6a7a2
a1
a1
a1
b2
a1
a1
b2
a1
b2
b1
b1
a1
b2
a2
a1
b2
a1
a1
Neutral
1001
3065
314
614
1070
1578
1176
1158
736
181
671
1321
409
1020
1472
3067
PES
MPI-PES
This work
C6H579Br+•
C6H581Br+•
950
331
320
540
1100
1530
3083(?)
331
593
1073
1577
1523
1193
3083(?)
329
593
1073
1577
1523
1193
791
126
678
1307
396
1008
257
1466
3083(?)
659
987
1322
1653
928
1402
1734
1754
1911
2061
2241
2474
791
126
678
1307
394
1008
257
1466
3083(?)
659
986
1320
1649
1180
720
1016
980
1399
1729
1750
1907
2058
2239
2471
Vibrational frequencies (in cm-1) and their assignments for
~
the ground state ( X2B1) iodobenzene cation.
Mode
(Wilson)
1
6a
6b
7a
8a
8b
10b
11
12
16a
16b
17b
18a
18b
6a2
6a3
6a4
6a1121
18b111
6a111
6a118a1
6a17a1
6a211
6a27a1
11121
12118a1
7a1121
6a1121
symmetry
Neutral
a1
a1
b2
a1
a1
b2
b1
b1
a1
a2
b1
b1
a1
b2
998
268
612
1063
1575
729
167
654
398
421
903
1015
220
PES
331
1016
This work
990
284
538
1036
1575
1517
808
127
661
357
406
903
1015
242
567
848
1129
943
1226
1269
1296
1310
1548
1594
1648
1676
1695
2256
Vibrational frequencies (in cm-1) and their assignments for
~
the ground state ( X2B1) fluorobenzene cation.
Mode
(Wilson)
3
6a
6b
7a
8a
8b
9a
9b
10b
11
12
14
15
16b
18b
19a
19b
6a19a1
6a131
6a1141
6a18a1
9a1121
9a19b1
9a2
symmetry
Neutral
b2
a1
b2
a1
a1
b2
a1
b2
b1
b1
a1
b2
b2
b1
b2
a1
b2
1301
517
615
1232
1604
1597
1156
1128
754
249
809
1326
1066
498
400
1500
1460
MPI-PES
500
510
MATI
500
505
1620
1170
1164
810
181
795
410
400
This work
1299
500
606
1274
1610
1574
1168
1106
763
182
804
1339
1071
479
402
1502
1464
1668
1797
1842
2109
1968
2282
2343
6an progression
Prominent for C6H5Cl+• , C6H5Br+• , C6H5I+•.
Not so for C6H5F+• . Why?
Calculation of geometrical change upon ionization.
Calculation of mode eigenvectors for ions.
B3LYP / 6-311++G * * and other levels.
geometry change upon ionization
6a eigenvector
~
Ⅳ. MATI spectra in the B2B2 excited electronic state
~
B 2B2 , C6H535Cl+•
cm-1
Photon Energy, cm-1
~
B 2B2, C6H579Br+•
cm-1
Photon Energy, cm-1
Vibrational frequencies (in cm-1) and their assignments for
~ 2B excited state.
the chlorobenzene cation in the B
2
Mode
(Wilson) symmetry Neutral
1
3
4
5
6a
6b
7a
9a
10a
10b
11
12
16a
16b
17b
18a
18b
6a116a1
6b116a1
a1
b2
b1
b1
a1
b2
a1
a1
a2
b1
b1
a1
a2
b1
b1
a1
b2
1003
1271
682
985
420
616
1085
1174
830
740
196
701
400
467
902
1026
297
PES
REMPDS
PIRI
This work
970
869
1010
961
1279
667
340
387
943
730
384
562
1131
1263
382
546
1080
1173
761
313
260
636
223
218
866
329
759
153
725
329
439
899
1009
246
709
870
Vibrational frequencies (in cm-1) and their assignments for
~ 2B excited state.
the bromobenzene cation in the B
2
Mode
(Wilson)
1
3
6b
7a
8a
9a
9b
12
14
17b
18a
19a
symmetry
Neutral
PES
This work
a1
b2
b2
a1
a1
a1
b2
a1
b2
b1
a1
a1
1001
1264
614
1070
1578
1176
1158
671
1321
904
1020
1472
970
959
1251
542
1015
1571
1180
1130
622
1333
889
982
1419
620
~
B 2B2, C6H5 I+•
Photon Energy, cm-1
Ⅴ. Selection rule
Theoretical
Transition moment for the R (Rydberg) ← X (ground) transition
 RX = <  R││ X >
~ < elR││elX > < vibR│vibX >
Born - Oppenheimer
approximation
Ground state → zero–point level (∵ beam condition),
totally symmetry (a1)
→ vibrational state of R should be a1 also.
a1 propensity rule
observation
a1 > b2 > b1 >> a2
Why?
Ⅵ. Summary and conclusion
~
1. MATI spectra of C6H5X+• in the ground ( X = Cl, Br, I, F ) and B2B2
excited ( X = Cl, Br, I ) electronic states obtained by one–photon
VUV- MATI spectroscopy.
2. Accurate ionization energies and vibrational frequencies in the
~
ground ( X = Cl, Br, I, F ) and B2B2 excited ( X = Cl, Br ) electronic
states determined.
3. The ground state MATI spectra ( X = Cl, Br, I ) display prominent
6an progression due to geometry change upon ionization along
the 6a eigenvector.
~
4. Well-resolved vibrational spectra obtained for B2B2 of C6H5Cl+•
and C6H5Br+• which are very long-lived states. Broad band
~
spectrum obtained for B2B2 of C6H5I+• which has a short lifetime.
5. A routine spectroscopic technique, VUV-MATI, has been
developed to record vibrational spectra of polyatomic ions.